High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

被引:11
作者
Blokhin, S. A. [1 ]
Maleev, N. A. [1 ,2 ]
Bobrov, M. A. [1 ]
Kuzmenkov, A. G. [1 ,3 ]
Sakharov, A. V. [1 ]
Ustinov, V. M. [1 ,3 ,4 ]
机构
[1] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] St Petersburg State Electrotech Univ, St Petersburg 197022, Russia
[3] Russian Acad Sci, Submicron Heterostruct Microelect Res & Engn Ctr, St Petersburg 194021, Russia
[4] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
关键词
850 NM VCSELS; OPERATING ERROR-FREE; QUANTUM-WELL LASERS; DISTRIBUTED BRAGG REFLECTORS; MD-MQW LASERS; DIFFERENTIAL GAIN; PHOTON LIFETIME; MULTIMODE FIBER; DIFFUSION CAPACITANCE; MODULATION BANDWIDTH;
D O I
10.1134/S1063785018010054
中图分类号
O59 [应用物理学];
学科分类号
摘要
The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of similar to 30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 108 条
  • [31] Handlung A., 2004, IEEE PHOTONIC TECH L, V16, P368
  • [32] Reliability of various size oxide aperture VCSELs
    Hawkins, BM
    Hawthorne, RA
    Guenter, JK
    Tatum, JA
    Biard, JR
    [J]. 52ND ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE, 2002 PROCEEDINGS, 2002, : 540 - 550
  • [33] Active Region Design for High-Speed 850-nm VCSELs
    Healy, Sorcha B.
    O'Reilly, Eoin P.
    Gustavsson, Johan S.
    Westbergh, Petter
    Haglund, Asa
    Larsson, Anders
    Joel, Andrew
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (04) : 506 - 512
  • [34] Estimation of scattering losses in dielectrically apertured vertical cavity lasers
    Hegblom, ER
    Babic, DI
    Thibeault, BJ
    Coldren, LA
    [J]. APPLIED PHYSICS LETTERS, 1996, 68 (13) : 1757 - 1759
  • [35] Hofmann W., 2011, P OPT FIB COMM C LOS
  • [36] Jackson KennethP., 2013, VCSELs, 166 of Springer Series in Optical Sciences, P431
  • [37] Johnson R., 2008, P C LAS EL SAN JOS U
  • [38] Reliability performance of 25 Gbit s-1 850 nm vertical-cavity surface-emitting lasers
    Karachinsky, L. Ya
    Blokhin, S. A.
    Novikov, I. I.
    Maleev, N. A.
    Kuzmenkov, A. G.
    Bobrov, M. A.
    Lott, J. A.
    Ledentsov, N. N.
    Shchukin, V. A.
    Kropp, J-R
    Bimberg, D.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (06)
  • [39] Kasukawa A., 2015, P IEEE PHOT C IPC 20, P585
  • [40] REDUCTION OF P-DOPED MIRROR ELECTRICAL-RESISTANCE OF GAAS/ALGAAS VERTICAL-CAVITY SURFACE-EMITTING LASERS BY DELTA-DOPING
    KOJIMA, K
    MORGAN, RA
    MULLALY, T
    GUTH, GD
    FOCHT, MW
    LEIBENGUTH, RE
    ASOM, MT
    [J]. ELECTRONICS LETTERS, 1993, 29 (20) : 1771 - 1772