High-Speed Semiconductor Vertical-Cavity Surface-Emitting Lasers for Optical Data-Transmission Systems (Review)

被引:11
作者
Blokhin, S. A. [1 ]
Maleev, N. A. [1 ,2 ]
Bobrov, M. A. [1 ]
Kuzmenkov, A. G. [1 ,3 ]
Sakharov, A. V. [1 ]
Ustinov, V. M. [1 ,3 ,4 ]
机构
[1] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] St Petersburg State Electrotech Univ, St Petersburg 197022, Russia
[3] Russian Acad Sci, Submicron Heterostruct Microelect Res & Engn Ctr, St Petersburg 194021, Russia
[4] Peter Great St Petersburg Polytech Univ, St Petersburg 195251, Russia
关键词
850 NM VCSELS; OPERATING ERROR-FREE; QUANTUM-WELL LASERS; DISTRIBUTED BRAGG REFLECTORS; MD-MQW LASERS; DIFFERENTIAL GAIN; PHOTON LIFETIME; MULTIMODE FIBER; DIFFUSION CAPACITANCE; MODULATION BANDWIDTH;
D O I
10.1134/S1063785018010054
中图分类号
O59 [应用物理学];
学科分类号
摘要
The main problems of providing a high-speed operation semiconductor lasers with a vertical microcavity (so-called "vertical-cavity surface-emitting lasers") under amplitude modulation and ways to solve them have been considered. The influence of the internal properties of the radiating active region and the electrical parasitic elements of the equivalent circuit of lasers are discussed. An overview of approaches that lead to an increase of the cutoff parasitic frequency, an increase of the differential gain of the active region, the possibility of the management of mode emission composition and the lifetime of photons in the optical microcavities, and reduction of the influence of thermal effects have been presented. The achieved level of modulation bandwidth of similar to 30 GHz is close to the maximum achievable for the classical scheme of the direct-current modulation, which makes it necessary to use a multilevel modulation format to further increase the information capacity of optical channels constructed on the basis of vertical-cavity surface-emitting lasers.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 108 条
  • [1] Agraval G. P., 1997, FIBER OPTIC COMMUNIC
  • [2] Al-Omari AN, 2005, IEEE T DIELECT EL IN, V12, P1151, DOI 10.1109/TDEI.2005.1561795
  • [3] Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth
    Al-Omari, AN
    Lear, KL
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (04) : 969 - 971
  • [4] Low thermal resistance high-speed top-emitting 980-nm VCSELs
    Al-Ornari, A. N.
    Carey, G. P.
    Hallstein, S.
    Watson, J. P.
    Dang, G.
    Lear, K. L.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (9-12) : 1225 - 1227
  • [5] ANAN T, 2007, P INT S VCSELS INT P, pE3
  • [6] QUANTUM-WELL LASERS GAIN, SPECTRA, DYNAMICS
    ARAKAWA, Y
    YARIV, A
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1986, 22 (09) : 1887 - 1899
  • [7] Azuchi M., 2003, CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671)
  • [8] Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling
    Baveja, Prashant P.
    Kogel, Benjamin
    Westbergh, Petter
    Gustavsson, Johan S.
    Haglund, Asa
    Maywar, Drew N.
    Agrawal, Govind P.
    Larsson, Anders
    [J]. OPTICS EXPRESS, 2011, 19 (16): : 15490 - 15505
  • [9] ENERGY-LEVELS AND EXCITON OSCILLATOR STRENGTH IN SUBMONOLAYER INAS-GAAS HETEROSTRUCTURES
    BELOUSOV, MV
    LEDENTSOV, NN
    MAXIMOV, MV
    WANG, PD
    YASIEVICH, IN
    FALEEV, NN
    KOZIN, IA
    USTINOV, VM
    KOPEV, PS
    TORRES, CMS
    [J]. PHYSICAL REVIEW B, 1995, 51 (20): : 14346 - 14351
  • [10] Blokhin SA, 2011, PROC SPIE, V8308, DOI 10.1117/12.904604