Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three

被引:18
作者
Ben Ayed, Mohamed
El Mehdi, Khalil
Pacella, Filomena
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Fac Sci Sfax, Dept Math, Sfax, Tunisia
[3] Univ Nouakchott, Fac Sci & Tech, Nouakchott, Mauritania
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2006年 / 23卷 / 04期
关键词
blow-up analysis; sign changing solutions; nodal domains; critical exponent;
D O I
10.1016/j.anihpc.2005.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study low energy sign changing solutions of the critical exponent problem (P-lambda): -Delta u = u(5) + lambda u in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-3 and lambda is a real positive parameter. We make a precise blow-up analysis of this kind of solutions and prove some comparison results among some limit values of the parameter lambda which are related to the existence of positive or of sign changing solutions. (C) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:567 / 589
页数:23
相关论文
共 14 条
[1]  
ATKINSON FV, 1988, CR ACAD SCI I-MATH, V306, P711
[2]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[3]   A nonexistence result for Yamabe type problems on thin annuli [J].
Ben Ayed, M ;
El Mehdi, K ;
Hammami, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (05) :715-744
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[6]  
BREZIS H, 1986, P SYMP PURE MATH, V45, P165
[7]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[8]   Elliptic equations with critical Sobolev exponents in dimension 3 [J].
Druet, O .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (02) :125-142
[9]   PRESCRIBING SCALAR CURVATURE ON S-N AND RELATED PROBLEMS .1. [J].
LI, YY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 120 (02) :319-410
[10]   THE ROLE OF THE GREENS-FUNCTION IN A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT [J].
REY, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) :1-52