A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers

被引:154
作者
Binh Thai Pham [1 ]
Prakash, Indra [2 ]
Dou, Jie [3 ]
Singh, Sushant K. [4 ]
Phan Trong Trinh [5 ]
Hieu Trung Tran [6 ]
Tu Minh Le [7 ]
Tran Van Phong [5 ]
Khoi, Dang Kim [8 ]
Shirzadi, Ataollah [9 ]
Dieu Tien Bui [10 ,11 ]
机构
[1] Univ Transport Technol, Geotech Engn & Artificial Intelligence Res Grp GE, Hanoi, Vietnam
[2] BISAG, Dept Sci & Technol, Gandhinagar, Gujarat, India
[3] Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
[4] Virtusa Corp, Irvington, NJ USA
[5] Vietnam Acad Sci & Technol, Inst Geol Sci, Hanoi, Vietnam
[6] Univ Transport Technol, Sci Technol & Int Cooperat Dept, Hanoi, Vietnam
[7] Univ Transport Technol, Hanoi, Vietnam
[8] Inst Policy & Strategy Agr & Rural Dev, Ctr Agr Policy, Hanoi, Vietnam
[9] Univ Kurdistan, Fac Nat Resources, Dept Rangeland & Watershed Management, Sanandaj, Iran
[10] Ton Duc Thang Univ, Geog Informat Sci Res Grp, Ho Chi Minh City, Vietnam
[11] Ton Duc Thang Univ, Fac Environm & Labour Safety, Ho Chi Minh City, Vietnam
关键词
landslide susceptibility mapping; machine learning; rotation forest; base classifiers; India; ARTIFICIAL NEURAL-NETWORKS; MACHINE LEARNING-METHODS; SUPPORT VECTOR MACHINE; DECISION TREE METHODS; YIHUANG AREA CHINA; NAIVE BAYES TREE; SPATIAL PREDICTION; LOGISTIC-REGRESSION; HAZARD ZONATION; RANDOM SUBSPACE;
D O I
10.1080/10106049.2018.1559885
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the present study, Rotation Forest ensemble was integrated with different base classifiers to develop different hybrid models namely Rotation Forest based Support Vector Machines (RFSVM), Rotation Forest based Artificial Neural Networks (RFANN), Rotation Forest based Decision Trees (RFDT), and Rotation Forest based Naive Bayes (RFNB) for landslide susceptibility modelling. The validity of these models was evaluated using statistical methods such as Root Mean Square Error (RMSE), Kappa index, accuracy, and the area under the success rate and predictive rate curves (AUC). Part of the landslide prone area of Pithoragarh district, Uttarakhand, Himalaya, India was selected as the study area. Results indicate that the RFDT is the best model showing the highest predictive capability (AUC = 0.741) in comparison to RFANN (AUC = 0.710), RFSVM (AUC = 0.701), and RFNB (AUC = 0.640) models. The present study would be helpful in the selection of best model for landslide susceptibility mapping.
引用
收藏
页码:1267 / 1292
页数:26
相关论文
共 84 条
[1]  
Abedini M., 2018, Geocarto Int, P1
[2]  
[Anonymous], VIETNAM J EARTH SCI
[3]  
[Anonymous], T GIS
[4]  
[Anonymous], 2016, J. Geom.
[5]   The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan [J].
Ayalew, L ;
Yamagishi, H .
GEOMORPHOLOGY, 2005, 65 (1-2) :15-31
[6]   Evaluation of MLP and RBF Methods for Hazard Zonation of Landslides Triggered by the Twin Ahar-Varzeghan Earthquakes [J].
Bagheri V. ;
Uromeihy A. ;
Razifard M. .
Geotechnical and Geological Engineering, 2017, 35 (05) :2163-2190
[7]   Changes in land cover and shallow landslide activity:: A case study in the Spanish Pyrenees [J].
Beguería, S .
GEOMORPHOLOGY, 2006, 74 (1-4) :196-206
[8]  
Benbouzid D, 2012, J MACH LEARN RES, V13, P549
[9]   Characterising performance of environmental models [J].
Bennett, Neil D. ;
Croke, Barry F. W. ;
Guariso, Giorgio ;
Guillaume, Joseph H. A. ;
Hamilton, Serena H. ;
Jakeman, Anthony J. ;
Marsili-Libelli, Stefano ;
Newham, Lachlan T. H. ;
Norton, John P. ;
Perrin, Charles ;
Pierce, Suzanne A. ;
Robson, Barbara ;
Seppelt, Ralf ;
Voinov, Alexey A. ;
Fath, Brian D. ;
Andreassian, Vazken .
ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 40 :1-20
[10]   Spatial Prediction of Rainfall-Induced Landslides Using Aggregating One-Dependence Estimators Classifier [J].
Binh Thai Pham ;
Prakash, Indra ;
Jaafari, Abolfazl ;
Dieu Tien Bui .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (09) :1457-1470