PURE DISCRETE SPECTRUM FOR A CLASS OF ONE-DIMENSIONAL SUBSTITUTION TILING SYSTEMS

被引:9
|
作者
Barge, Marcy [1 ]
机构
[1] Montana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
关键词
Substitution; tiling space; discrete spectrum; maximal equicontinuous factor; PISOT SUBSTITUTIONS; COINCIDENCE; DYNAMICS;
D O I
10.3934/dcds.2016.36.1159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if a primitive and non-periodic substitution is injective on initial letters, constant on final letters, and has Pisot inflation, then the R-action on the corresponding tiling space has pure discrete spectrum. As a consequence, all beta-substitutions for beta a Pisot simple Parry number have tiling dynamical systems with pure discrete spectrum, as do the Pisot systems arising, for example, from substitutions associated with the Jacobi-Perron and Brun continued fraction algorithms.
引用
收藏
页码:1159 / 1173
页数:15
相关论文
共 50 条
  • [31] Periodic oscillation of quantum diffusion in coupled one-dimensional systems
    Jiang, JinYi
    Lu, YanYan
    Wang, Chao
    Mosseri, Remy
    Zhong, JianXin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (04)
  • [32] Conservation laws, integrability, and transport in one-dimensional quantum systems
    Sirker, J.
    Pereira, R. G.
    Affleck, I.
    PHYSICAL REVIEW B, 2011, 83 (03)
  • [33] Inelastic collapse in one-dimensional driven systems under gravity
    Wakou, Jun'ichi
    Kitagishi, Hiroyuki
    Sakaue, Takahiro
    Nakanishi, Hiizu
    PHYSICAL REVIEW E, 2013, 87 (04):
  • [34] Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems
    Moca, Catalin Pascu
    Kormos, Mrton
    Zarand, Gergely
    PHYSICAL REVIEW LETTERS, 2017, 119 (10)
  • [35] Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice
    M. É. Muminov
    N. M. Aliev
    Theoretical and Mathematical Physics, 2012, 171 : 754 - 768
  • [36] Pattern Formation in One-Dimensional Polaron Systems and Temporal Orthogonality Catastrophe
    Koutentakis, Georgios M.
    Mistakidis, Simeon, I
    Schmelcher, Peter
    ATOMS, 2022, 10 (01)
  • [37] Charge and energy transport by Holstein solitons in anharmonic one-dimensional systems
    Cisneros-Ake, Luis A.
    Brizhik, L.
    CHAOS SOLITONS & FRACTALS, 2019, 119 : 343 - 354
  • [38] Quantum Monte Carlo studies of spinons in one-dimensional spin systems
    Tang, Ying
    Sandvik, Anders W.
    PHYSICAL REVIEW B, 2015, 92 (18):
  • [39] Dipolar relaxation of multiple quantum NMR coherences in one-dimensional systems
    Bochkin, G. A.
    Fel'dman, E. B.
    Vasil'ev, S. G.
    Volkov, V. I.
    CHEMICAL PHYSICS LETTERS, 2017, 680 : 56 - 60
  • [40] Duality in Power-Law Localization in Disordered One-Dimensional Systems
    Deng, X.
    Kravtsov, V. E.
    Shlyapnikov, G. V.
    Santos, L.
    PHYSICAL REVIEW LETTERS, 2018, 120 (11)