Asymptotic Behavior of Conditional Least Squares Estimators for Unstable Integer-valued Autoregressive Models of Order 2

被引:9
作者
Barczy, Matyas [1 ]
Ispany, Marton [1 ]
Pap, Gyula [2 ]
机构
[1] Univ Debrecen, Fac Informat, H-4010 Debrecen, Hungary
[2] Univ Szeged, Bolyai Inst, Szeged, Hungary
关键词
branching process with immigration; Bessel process; conditional least squares estimator; martingale; unstable INAR(p) process; INFERENCE;
D O I
10.1111/sjos.12069
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the asymptotic behavior of the conditional least squares estimators of the autoregressive parameters, of the mean of the innovations, and of the stability parameter for unstable integer-valued autoregressive processes of order 2 is described. The limit distributions and the scaling factors are different according to the following three cases: (i) decomposable, (ii) indecomposable but not positively regular, and (iii) positively regular models.
引用
收藏
页码:866 / 892
页数:27
相关论文
共 27 条
[1]   AN INTEGER-VALUED PTH-ORDER AUTOREGRESSIVE STRUCTURE (INAR(P)) PROCESS [J].
ALZAID, AA ;
ALOSH, M .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (02) :314-324
[2]  
[Anonymous], 2003, LIMIT THEOREMS STOCH, DOI DOI 10.1007/978-3-662-05265-5
[3]   Asymptotic behavior of unstable INAR(p) processes [J].
Barczy, M. ;
Ispany, M. ;
Pap, G. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (03) :583-608
[4]  
Barczy M., 2010, ASYMPTOTIC BEHAV CLS
[5]  
Brannas K., 2001, Econometric Reviews, V20, P425
[6]   Local asymptotic normality and efficient estimation for INAR(p) models [J].
Drost, Feike C. ;
Van Den Akker, Ramon ;
Werker, Bas J. M. .
JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (05) :783-801
[7]   The asymptotic structure of nearly unstable non-negative integer-valued AR(1) models [J].
Drost, Feike C. ;
Van Den Akker, Ramon ;
Werker, Bas J. M. .
BERNOULLI, 2009, 15 (02) :297-324
[8]  
Du J.-G., 1991, Journal of Time Series Analysis, V12, P129, DOI 10.1111/j.1467-9892.1991.tb00073.x
[9]  
Franke J., 1993, DEV TIME SERIES ANAL, P310
[10]  
Gauthier G., 1994, Annales des Sciences Mathematiques du Quebec, V18, P49