HOMOGENEOUS ALGORITHMS FOR MONOTONE COMPLEMENTARITY PROBLEMS OVER SYMMETRIC CONES

被引:0
作者
Yoshise, Akiko [1 ]
机构
[1] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki 3058573, Japan
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2009年 / 5卷 / 02期
关键词
complementarity problem; symmetric cone; homogeneous algorithm; interior point method; complexity analysis; INTERIOR-POINT METHODS; EUCLIDEAN JORDAN ALGEBRAS; BARRIER FUNCTIONS; P-PROPERTIES; CONVERGENCE; TRANSFORMATIONS; EXTENSION;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In [24], the author proposed a homogeneous model for standard monotone nonlinear complementarity problems over symmetric cones and show that the following properties hold: (a) There is a path that is bounded and has a trivial starting point without any regularity assumption concerning the existence of feasible or strictly feasible solutions. (b) Any accumulation point of the path is a solution of the homogeneous model. (c) If the original problem is solvable, then every accumulation point of the path gives (is a finite solution. (d) If the original problem is strongly infeasible, then, under the assumption of Lipschitz continuity, ally accumulation point of the path gives us a finite certificate proving infeasibility. In this paper, we propose a class of algorithms for numerically tracing the path in (a) above. Let r be the rank of the intended Euclidian Jordan algebra. By introducing a parameter 0 >= 0 for quantifying a scaled Lipschitz property of a function, we obtain the following results: (el) The (infeasible) NT method takes O(root r(1 + root r theta) log epsilon(-1)) iterations for tire short-step, and O(r(1 + root r theta) log epsilon(-1)) iterations for the semi-long-arid long-step variants. (e2) The (infeasible) xy method or yx method takes O(root r(1 + root r theta) log epsilon(-1)) iterations for the short-step, O(r(1 + root r theta) log epsilon(-1)) iterations for the semi-long-step, and O(r(1.5)(1 + root r theta) log epsilon(-1)) iterations for the long-step variant. If the original complementarity problem is linear then theta = 0 and the above results achieve the best iteration-complexity bounds known so far for linear or convex quadratic optimization problems over symmetric cones.
引用
收藏
页码:313 / 337
页数:25
相关论文
共 25 条
[1]   Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results [J].
Alizadeh, F ;
Haeberly, JPA ;
Overton, ML .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) :746-768
[2]  
ALIZADEH F, 2000, HDB SEMIDEFINITE PRO
[3]   On a homogeneous algorithm for the monotone complementarity problem [J].
Andersen, ED ;
Ye, YY .
MATHEMATICAL PROGRAMMING, 1999, 84 (02) :375-399
[4]  
Facchinei F., 2007, Finite-dimensional variational inequalities and complementarity problems
[5]  
Faraut J., 1994, ANAL SYMMETRIC CONES
[6]   Several Jordan-algebraic aspects of optimization [J].
Faybusovich, L. .
OPTIMIZATION, 2008, 57 (03) :379-393
[7]   Linear systems in Jordan algebras and primal-dual interior-point algorithms [J].
Faybusovich, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :149-175
[8]   Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank [J].
Faybusovich, L ;
Tsuchiya, T .
MATHEMATICAL PROGRAMMING, 2003, 97 (03) :471-493
[9]   Euclidean Jordan algebras and interior-point algorithms [J].
Faybusovich, L .
POSITIVITY, 1997, 1 (04) :331-357
[10]   Some global uniqueness and solvability results for linear complementarity problems over symmetric cones [J].
Gowda, M. Seetharama ;
Sznajder, R. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (02) :461-481