Quantum information in the Posner model of quantum cognition

被引:16
作者
Halpern, Nicole Yunger [1 ,2 ,3 ,4 ]
Crosson, Elizabeth [1 ,2 ,5 ]
机构
[1] Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Harvard Smithsonian Ctr Astrophys, ITAMP, 60 Garden St, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Univ New Mexico, Dept Phys & Astron, Ctr Quantum Informat & Control CQuIC, Albuquerque, NM 87131 USA
关键词
Quantum information processing; Quantum computation; Quantum entanglement; Measurement-based quantum computation; Quantum teleportation; Posner molecule; Quantum error correction; BOND GROUND-STATES; CALCIUM-PHOSPHATE; LOGIC GATE; COMPUTATION; CONSCIOUSNESS; ALGORITHMS; EXISTENCE; GLUTAMATE; CLUSTER; SCHEME;
D O I
10.1016/j.aop.2018.11.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Matthew Fisher recently postulated a mechanism by which quantum phenomena could influence cognition: Phosphorus nuclear spins may resist decoherence for long times. The spins would serve as biological qubits. The qubits may resist decoherence longer when in Posner molecules. We imagine that Fisher postulates correctly. How adroitly could biological systems process quantum information (QI)? We establish a framework for answering. Additionally, we construct applications of biological qubits to quantum error correction, quantum communication, and quantum computation. First, we posit how the QI encoded by the spins transforms as Posner molecules form. The transformation points to a natural computational basis for qubits in Posner molecules. From the basis, we construct a quantum code that detects arbitrary single-qubit errors. Each molecule encodes one qutrit. Shifting from information storage to computation, we define the model of Posner quantum computation. To illustrate the model's quantum-communication ability, we show how it can teleport information incoherently: A state's weights are teleported. Dephasing results from the entangling operation's simulation of a coarse-grained Bell measurement. Whether Posner quantum computation is universal remains an open question. However, the model's operations can efficiently prepare a Posner state usable as a resource in universal measurement-based quantum computation. The state results from deforming the Affleck-Kennedy-Lieb-Tasaki (AKLT) state and is a projected entangled-pair state (PEPS). Finally, we show that entanglement can affect molecular-binding rates, boosting a binding probability from 33.6% to 100% in an example. This work opens the door for the Ql-theoretic analysis of biological qubits and Posner molecules. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 147
页数:56
相关论文
共 106 条
[1]   Quantum computing, postselection, and probabilistic polynomial-time [J].
Aaronson, S .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2063) :3473-3482
[2]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[3]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[4]  
Ashcroft N. W., 1976, Solid State Physics
[5]   Quantum Computational Renormalization in the Haldane Phase [J].
Bartlett, Stephen D. ;
Brennen, Gavin K. ;
Miyake, Akimasa ;
Renes, Joseph M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (11)
[6]   Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter [J].
Bellocchio, EE ;
Reimer, RJ ;
Fremeau, RT ;
Edwards, RH .
SCIENCE, 2000, 289 (5481) :957-960
[7]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[8]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[9]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[10]   Modelling the magnetic signature of neuronal tissue [J].
Blagoev, K. B. ;
Mihaila, B. ;
Travis, B. J. ;
Alexandrov, L. B. ;
Bishop, A. R. ;
Ranken, D. ;
Posse, S. ;
Gasparovic, C. ;
Mayer, A. ;
Aine, C. J. ;
Ulbert, I. ;
Morita, M. ;
Muller, W. ;
Connor, J. ;
Halgren, E. .
NEUROIMAGE, 2007, 37 (01) :137-148