A survey of current trends in computational drug repositioning

被引:393
作者
Li, Jiao [1 ]
Zheng, Si [1 ]
Chen, Bin [2 ]
Butte, Atul J. [3 ,4 ,5 ,6 ]
Swamidass, S. Joshua [7 ]
Lu, Zhiyong [8 ]
机构
[1] Chinese Acad Med Sci, Inst Med Informat, 3rd Yabao Rd, Beijing 100020, Peoples R China
[2] Stanford Sch Med, Stanford, CA USA
[3] Stanford Univ, Pediat & Genet, Stanford, CA 94305 USA
[4] Stanford Univ, Med Pathol & Comp Sci, Stanford, CA 94305 USA
[5] Stanford Univ, Div Syst Med, Stanford, CA 94305 USA
[6] Lucile Packard Childrens Hosp, Palo Alto, CA USA
[7] Washington Univ, Lab & Genom Med Pathol & Immunol Dept, St Louis, MO 63130 USA
[8] NIH, Natl Ctr Biotechnol Informat, Biomed Text Min Res Grp, Bethesda, MD USA
关键词
computational drug repositioning; integrative strategies; genome; phenome; chemical structure; drug combination; prediction validation; GENOME-WIDE ASSOCIATION; SMALL MOLECULES; SYSTEMATIC IDENTIFICATION; EXPRESSION PROFILES; BREAST-CANCER; CELL-GROWTH; DISEASE; MICRORNAS; DISCOVERY; DATABASE;
D O I
10.1093/bib/bbv020
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational drug repositioning or repurposing is a promising and efficient tool for discovering new uses from existing drugs and holds the great potential for precision medicine in the age of big data. The explosive growth of large-scale genomic and phenotypic data, as well as data of small molecular compounds with granted regulatory approval, is enabling new developments for computational repositioning. To achieve the shortest path toward new drug indications, advanced data processing and analysis strategies are critical for making sense of these heterogeneous molecular measurements. In this review, we show recent advancements in the critical areas of computational drug repositioning from multiple aspects. First, we summarize available data sources and the corresponding computational repositioning strategies. Second, we characterize the commonly used computational techniques. Third, we discuss validation strategies for repositioning studies, including both computational and experimental methods. Finally, we highlight potential opportunities and use-cases, including a few target areas such as cancers. We conclude with a brief discussion of the remaining challenges in computational drug repositioning.
引用
收藏
页码:2 / 12
页数:11
相关论文
共 101 条
[1]   Literature mining, ontologies and information visualization for drug repurposing [J].
Andronis, Christos ;
Sharma, Anuj ;
Virvilis, Vassilis ;
Deftereos, Spyros ;
Persidis, Aris .
BRIEFINGS IN BIOINFORMATICS, 2011, 12 (04) :357-368
[2]  
Arighi CN, 2014, DATABASE-OXFORD, V2014, pbau
[3]  
Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   A phenome-guided drug repositioning through a latent variable model [J].
Bisgin, Halil ;
Liu, Zhichao ;
Fang, Hong ;
Kelly, Reagan ;
Xu, Xiaowei ;
Tong, Weida .
BMC BIOINFORMATICS, 2014, 15
[6]   Drug Repositioning for Treatment of Movement Disorders: From Serendipity to Rational Discovery Strategies [J].
Bolgar, Bence ;
Arany, Adam ;
Temesi, Gergely ;
Balogh, Balazs ;
Antal, Peter ;
Matyus, Peter .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2013, 13 (18) :2337-2363
[7]   Prospects for productivity [J].
Booth, B ;
Zemmel, R .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (05) :451-457
[8]   Blockade of oncogenic IκB kinase activity in diffuse large B-cell lymphoma by bromodomain and extraterminal domain protein inhibitors [J].
Ceribelli, Michele ;
Kelly, Priscilla N. ;
Shaffer, Arthur L. ;
Wright, George W. ;
Xiao, Wenming ;
Yang, Yibin ;
Griner, Lesley A. Mathews ;
Guha, Rajarshi ;
Shinn, Paul ;
Keller, Jonathan M. ;
Liu, Dongbo ;
Patel, Paresma R. ;
Ferrer, Marc ;
Joshi, Shivangi ;
Nerle, Sujata ;
Sandy, Peter ;
Normant, Emmanuel ;
Thomas, Craig J. ;
Staudt, Louis M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (31) :11365-11370
[9]   Assessing Drug Target Association Using Semantic Linked Data [J].
Chen, Bin ;
Ding, Ying ;
Wild, David J. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (07)
[10]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)