Statistical correlations in nuclear many-body states

被引:17
|
作者
Kusnezov, D
Brown, BA
Zelevinsky, V
机构
[1] MICHIGAN STATE UNIV, NATL SUPERCONDUCTING CYCLOTRON LAB, E LANSING, MI 48824 USA
[2] MICHIGAN STATE UNIV, DEPT PHYS & ASTRON, E LANSING, MI 48824 USA
[3] BUDKER INST NUCL PHYS, NOVOSIBIRSK 630090, RUSSIA
基金
美国国家科学基金会;
关键词
random-matrix theory; shell model; nuclear correlations; Onishi formula; chaos;
D O I
10.1016/0370-2693(96)00853-2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Statistical correlations of nuclear many-body states are explored in the Od1s shell model as a function of the strength of residual interactions. Model independent predictions for correlation functions and distributions, developed from parametric random-matrix theory, are found to describe the observed nuclear behavior for excited states. In particular, we find that correlations generally decrease as a power law.
引用
收藏
页码:5 / 11
页数:7
相关论文
共 50 条
  • [21] Non-extensive statistical effects in nuclear many-body problems
    Lavagno, A.
    Quarati, P.
    ROMANIAN REPORTS IN PHYSICS, 2007, 59 (04) : 951 - 962
  • [22] NUCLEAR COLLISION-THEORY WITH MANY-BODY CORRELATIONS .1. FORMULATION
    KURIHARA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (06): : 1455 - 1470
  • [23] Many-body resonances and continuum states above many-body decay thresholds
    Kato, K.
    Myo, T.
    Kikuchi, Y.
    3RD INTERNATIONAL WORKSHOP ON STATE OF THE ART IN NUCLEAR CLUSTER PHYSICS, 2014, 569
  • [24] Many-body correlations in a multistep variational approach
    Sambataro, M
    PHYSICAL REVIEW C, 1999, 60 (06): : 8
  • [25] MANY-BODY CORRELATIONS IN THE PROBLEMS OF ELECTRODYNAMICS OF FLUIDS
    KUZMIN, VL
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 123 (06): : 365 - 407
  • [26] Vijay Pandharipande: Correlations in many-body systems
    Sick, Ingo
    NUCLEAR PHYSICS A, 2007, 790 : 185C - 190C
  • [27] Many-body correlations in nuclei and quantum dots
    Dean, DJ
    CHALLANGES OF NUCLEAR STRUCTURE, 2002, : 551 - 558
  • [28] Many-body correlations from integral geometry
    Robinson, Joshua F.
    Turci, Francesco
    Roth, Roland
    Royall, C. Paddy
    PHYSICAL REVIEW E, 2019, 100 (06)
  • [29] Electron correlations and many-body techniques in magnetism
    Kakehashi, Y
    ADVANCES IN PHYSICS, 2004, 53 (04) : 497 - 536
  • [30] NONPERTURBATIONAL METHOD FOR CALCULATING MANY-BODY CORRELATIONS
    VISSCHER, PB
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (01): : 13 - 13