On a topological N=4 Yang-Mills theory

被引:0
|
作者
Váña, O [1 ]
机构
[1] Charles Univ, Math Inst, Prague 18675 8, Czech Republic
来源
ACTA PHYSICA POLONICA B | 2002年 / 33卷 / 05期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show, starting from simple differential geometric example, that the partition function of a twisted N = 4 Yang-Mills theory on certain manifold X is localized on instanton moduli space. Moreover, it equals to the Euler characteristic of this moduli space.
引用
收藏
页码:1277 / 1284
页数:8
相关论文
共 50 条
  • [1] On a topological N = 4 Yang-Mills theory
    Vana, O.
    Acta Physica Polonica, Series B., 2002, 33 (05): : 1277 - 1284
  • [2] Topological Yang-Mills cohomology in pure Yang-Mills theory
    Accardi, A
    Belli, A
    Martellini, M
    Zeni, M
    PHYSICS LETTERS B, 1998, 431 (1-2) : 127 - 134
  • [3] Maximally supersymmetric Yang-Mills theory: The story of N=4 Yang-Mills theory
    Brink, Lars
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [4] THE OTHER TOPOLOGICAL TWISTING OF N=4 YANG-MILLS
    MARCUS, N
    NUCLEAR PHYSICS B, 1995, 452 (1-2) : 331 - 345
  • [5] AN EXTENDED TOPOLOGICAL YANG-MILLS THEORY
    DEGUCHI, S
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (110): : 57 - 69
  • [6] AN INTRODUCTION TO TOPOLOGICAL YANG-MILLS THEORY
    VANBAAL, P
    ACTA PHYSICA POLONICA B, 1990, 21 (02): : 73 - 99
  • [7] QUANTIZATION OF THE TOPOLOGICAL YANG-MILLS THEORY
    DAHMEN, HD
    MARCULESCU, S
    SZYMANOWSKI, L
    PHYSICS LETTERS B, 1990, 252 (04) : 591 - 595
  • [8] Is N=4 Yang-Mills theory soluble?
    Howe, PS
    West, PC
    GAUGE THEORIES, APPLIED SUPERSYMMETRY AND QUANTUM GRAVITY II, 1997, : 295 - 301
  • [9] TOPOLOGICAL ASPECTS OF YANG-MILLS THEORY
    ATIYAH, MF
    JONES, JDS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (02) : 97 - 118
  • [10] THE AFFINE N = 4 YANG-MILLS THEORY
    CADAVID, AC
    FINKELSTEIN, RJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (11): : 2469 - 2485