Derivation of the Biot-Savart equation from the nonlinear Schrodinger equation

被引:22
作者
Bustamante, Miguel D. [1 ]
Nazarenko, Sergey [2 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Complex & Adapt Syst Lab, Dublin 4, Ireland
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 05期
基金
爱尔兰科学基金会;
关键词
KOLMOGOROV TURBULENCE; VORTEX; VORTICES; DYNAMICS;
D O I
10.1103/PhysRevE.92.053019
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a systematic derivation of the Biot-Savart equation from the nonlinear Schrodinger equation, in the limit when the curvature radius of vortex lines and the intervortex distance are much greater than the vortex healing length, or core radius. We derive the Biot-Savart equations in Hamiltonian form with Hamiltonian expressed in terms of vortex lines, H = kappa(2)/8 pi integral vertical bar s - s vertical bar' >xi(*) ds.ds'/vertical bar s - s' vertical bar, with cutoff length xi(*) approximate to 0.341 6293/root rho(0), where rho(0) is the background condensate density far from the vortex lines and kappa is the quantum of circulation.
引用
收藏
页数:9
相关论文
共 20 条
[11]   Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems [J].
Kuznetsov, EA ;
Ruban, VP .
PHYSICAL REVIEW E, 2000, 61 (01) :831-841
[12]  
Madelung E., 1957, MATH HILFSMITTEL PHY
[13]   Quantum turbulence: Theoretical and numerical problems [J].
Nemirovskii, Sergey K. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 524 (03) :85-202
[14]   Thermodynamic equilibrium in the system of chaotic quantized vortices in a weakly imperfect Bose gas [J].
Nemirovskii, SK .
THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 141 (01) :1452-1460
[15]   Decaying Kolmogorov turbulence in a model of superflow [J].
Nore, C ;
Abid, M ;
Brachet, ME .
PHYSICS OF FLUIDS, 1997, 9 (09) :2644-2669
[16]   Kolmogorov turbulence in low-temperature superflows [J].
Nore, C ;
Abid, M ;
Brachet, ME .
PHYSICAL REVIEW LETTERS, 1997, 78 (20) :3896-3899
[17]   VORTICES IN HE-II, CURRENT ALGEBRAS AND QUANTUM KNOTS [J].
RASETTI, M ;
REGGE, T .
PHYSICA A, 1975, 80 (03) :217-233
[18]   On vortex waves in compressible fluids. II - The condensate vortex [J].
Roberts, PH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2031) :597-607
[19]  
Spiegel E.A., 1980, Phys. D: Nonl. Phen, V1, P236
[20]   Dynamics of vortex tangle without mutual friction in superfluid 4He [J].
Tsubota, M ;
Araki, T ;
Nemirovskii, SK .
PHYSICAL REVIEW B, 2000, 62 (17) :11751-11762