Electromagnetic Interference Shielding Materials Derived from Gelation of Multiwall Carbon Nanotubes in Polystyrene/Poly(methyl methacrylate) Blends

被引:124
作者
Rohini, Rani [1 ]
Bose, Suryasarathi [1 ]
机构
[1] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India
关键词
PS/PMMA blends; MWNTs; electrical conductivity; EMI shielding; thermal conductivity; IMMISCIBLE POLYMER BLENDS; ELECTRICAL-CONDUCTIVITY; NANOTUBE/POLYMER COMPOSITES; SELECTIVE LOCALIZATION; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; PS/PMMA BLEND; SURFACE; MORPHOLOGY; DISPERSION;
D O I
10.1021/am502641h
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.
引用
收藏
页码:11302 / 11310
页数:9
相关论文
共 42 条
[1]   Specific interactions and reactive coupling induced dispersion of multiwall carbon nanotubes in co continuous polyamide6/ionomer blends [J].
Bose, Suryasarathi ;
Bhattacharyya, Arup R. ;
Khare, Rupesh A. ;
Kulkarni, Ajit R. ;
Poetschke, Petra .
MACROMOLECULAR SYMPOSIA, 2008, 263 :11-20
[2]   Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites [J].
Brigandi, Paul J. ;
Cogen, Jeffrey M. ;
Pearson, Raymond A. .
POLYMER ENGINEERING AND SCIENCE, 2014, 54 (01) :1-16
[3]   Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends [J].
Calberg, C ;
Blacher, S ;
Gubbels, F ;
Brouers, F ;
Deltour, R ;
Jérôme, R .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (13) :1517-1525
[4]   The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J].
Cao, Mao-Sheng ;
Song, Wei-Li ;
Hou, Zhi-Ling ;
Wen, Bo ;
Yuan, Jie .
CARBON, 2010, 48 (03) :788-796
[5]   Solvent and polymer concentration effects on the surface morphology evolution of immiscible polystyrene/poly(methyl methacrylate) blends [J].
Cui, Liang ;
Ding, Yan ;
Li, Xue ;
Wang, Zhe ;
Han, Yanchun .
THIN SOLID FILMS, 2006, 515 (04) :2038-2048
[6]   Thermal diffusivity of polymers by the laser flash technique [J].
dos Santos, WN ;
Mummery, P ;
Wallwork, A .
POLYMER TESTING, 2005, 24 (05) :628-634
[7]   Electrical conductivity of individual carbon nanotubes [J].
Ebbesen, TW ;
Lezec, HJ ;
Hiura, H ;
Bennett, JW ;
Ghaemi, HF ;
Thio, T .
NATURE, 1996, 382 (6586) :54-56
[8]   Measuring the thermal conductivity of a single carbon nanotube [J].
Fujii, M ;
Zhang, X ;
Xie, HQ ;
Ago, H ;
Takahashi, K ;
Ikuta, T ;
Abe, H ;
Shimizu, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[9]   Selective Localization and Migration of Multiwalled Carbon Nanotubes in Blends of Polycarbonate and Poly(styrene-acrylonitrile) [J].
Goeldel, Andreas ;
Kasaliwal, Gaurav ;
Poetschke, Petra .
MACROMOLECULAR RAPID COMMUNICATIONS, 2009, 30 (06) :423-429
[10]   Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites [J].
Gojny, FH ;
Wichmann, MHG ;
Fiedler, B ;
Kinloch, IA ;
Bauhofer, W ;
Windle, AH ;
Schulte, K .
POLYMER, 2006, 47 (06) :2036-2045