Reversible operation of microtubular solid oxide cells using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O2-δ oxygen electrodes

被引:57
作者
Lopez-Robledo, M. J. [1 ,2 ]
Laguna-Bercero, M. A. [1 ]
Larrea, A. [1 ]
Orera, V. M. [1 ]
机构
[1] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, C Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[2] Gen Mil Acad, Ctr Univ Def, Zaragoza, Spain
关键词
Electrochemical properties; Extrusion; Microtubular; SOFC; SOEC; HIGH-TEMPERATURE ELECTROLYSIS; DOPED CERIA INTERLAYER; FUEL-CELLS; STEAM ELECTROLYSIS; COMPOSITE CATHODES; HYDROGEN ELECTRODE; HIGH-PERFORMANCE; DESIGN ISSUES; DEGRADATION; STABILITY;
D O I
10.1016/j.jpowsour.2017.12.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Yttria stabilized zirconia (YSZ) based microtubular solid oxide fuel cells (mT-SOFCs) using La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and Ce0.9Gd0.1O2-delta (GDC) as the oxygen electrode, along with a porous GDC electrolyte-electrode barrier layer, were fabricated and characterized in both fuel cell (SOFC) and electrolysis (SOEC) operation modes. The cells were anode-supported, the NiO-YSZ microtubular supports being made by Powder Extrusion Moulding (PEM). The cells showed power densities of 695 mW cm(-2) at 800 degrees C and 0.7 V in SOFC mode, and of 845 mA cm(-2) at 800 degrees C and 1.3 V in SOEC mode. AC impedance experiments performed under different potential loads demonstrated the reversibility of the cells. These results showed that these cells, prepared with a method suitable for using on an industrial scale, are highly reproducible and reliable, as well as very competitive as reversible SOFC-SOEC devices operating at intermediate temperatures.
引用
收藏
页码:184 / 189
页数:6
相关论文
共 65 条
[1]   High-performance Ni-YSZ thin-walled microtubes for anode-supported solid oxide fuel cells obtained by powder extrusion moulding [J].
Arias-Serrano, B. I. ;
Sotomayor, M. E. ;
Varez, A. ;
Levenfeld, B. ;
Monzon, H. ;
Laguna-Bercero, M. A. ;
Larrea, A. .
RSC ADVANCES, 2016, 6 (23) :19007-19015
[2]   Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes? [J].
Chen, Kongfa ;
Liu, Shu-Sheng ;
Ai, Na ;
Koyama, Michihisa ;
Jiang, San Ping .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (46) :31308-31315
[3]   Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells [J].
Chen, Kongfa ;
Jiang, San Ping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) :10541-10549
[4]   Development of solid oxide cells by co-sintering of GDC diffusion barriers with LSCF air electrode [J].
Choi, Hyun-Jong ;
Na, Young-Heum ;
Kwak, Minjun ;
Kim, Tae Woo ;
Seo, Doo-Won ;
Woo, Sang-Kuk ;
Kim, Sun-Dong .
CERAMICS INTERNATIONAL, 2017, 43 (16) :13653-13660
[5]   Optimisation of composite cathodes for intermediate temperature SOFC applications [J].
Dusastre, V ;
Kilner, JA .
SOLID STATE IONICS, 1999, 126 (1-2) :163-174
[6]   High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells [J].
Ebbesen, Sune Dalgaard ;
Jensen, Soren Hojgaard ;
Hauch, Anne ;
Mogensen, Mogens Bjerg .
CHEMICAL REVIEWS, 2014, 114 (21) :10697-10734
[7]   Current developments in reversible solid oxide fuel cells [J].
Gomez, Sergio Yesid ;
Hotza, Dachamir .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 61 :155-174
[8]   The effect of electrode infiltration on the performance of tubular solid oxide fuel cells under electrolysis and fuel cell modes [J].
Hanifi, A. R. ;
Laguna-Bercero, M. A. ;
Etsell, T. H. ;
Sarkar, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (15) :8002-8008
[9]   Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ [J].
Hanifi, Amir Reza ;
Laguna-Bercero, Miguel A. ;
Sandhu, Navjot Kaur ;
Etsell, Thomas H. ;
Sarkar, Partha .
SCIENTIFIC REPORTS, 2016, 6
[10]   Study of steam electrolysis using a microtubular ceramic reactor [J].
Hashimoto, S. ;
Liu, Y. ;
Mori, M. ;
Funahashi, Y. ;
Fujishiro, Y. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (03) :1159-1165