Multifunctional Regulation of 3D Cell-Laden Microsphere Culture on an Integrated Microfluidic Device

被引:44
作者
Zheng, Yajing [1 ,3 ]
Wu, Zengnan [2 ,3 ]
Khan, Mashooq [1 ]
Mao, Sifeng [1 ]
Manibalan, Kesavan [1 ]
Li, Nan [1 ]
Lin, Jin-Ming [1 ]
Lin, Ling [3 ]
机构
[1] Tsinghua Univ, Dept Chem, MOE Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing Key Lab Microanalyt Methods & Instrumenta, Beijing 100084, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[3] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SPHEROID CULTURE; TUMOR; MICROGELS; HYDROGELS; PLATFORM;
D O I
10.1021/acs.analchem.9b02434
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Three-dimensional (3D) hydrogel micro-spheres have aroused increasing attention as an in vitro cell culture model. Yet the preservation of cells' original biological properties has been overlooked during model construction. Here we present an integrated microfluidic device to accomplish the overall process including cell-laden microsphere generation, online extraction, and dynamic-culture. The method extends the noninvasive and nonsuppression capabilities of the droplet preparation system and provides a constant microenvironment, which reduces intracellular oxidative stress damage and the accumulation of mitochondria. Compared to the conventional preparation method, the coculture model of tumor-endothelial construction on an integrated platform displays high-level angiogenic protein expression. We believe that this versatile and biocompatible platform will provide a more reliable analysis tool for tissue engineering and cancer therapy.
引用
收藏
页码:12283 / 12289
页数:7
相关论文
共 39 条
[1]   Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery [J].
Agarwal, Pranay ;
Wang, Hai ;
Sun, Mingrui ;
Xu, Jiangsheng ;
Zhao, Shuting ;
Liu, Zhenguo ;
Gooch, Keith J. ;
Zhao, Yi ;
Lu, Xiongbin ;
He, Xiaoming .
ACS NANO, 2017, 11 (07) :6691-6702
[2]   Chemically induced coalescence in droplet-based microfluidics [J].
Akartuna, Ilke ;
Aubrecht, Donald M. ;
Kodger, Thomas E. ;
Weitz, David A. .
LAB ON A CHIP, 2015, 15 (04) :1140-1144
[3]   Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold [J].
Chen, Qiushui ;
Chen, Dong ;
Wu, Jing ;
Lin, Jin-Ming .
BIOMICROFLUIDICS, 2016, 10 (06)
[4]   Controlled assembly of heterotypic cells in a core-shell scaffold: organ in a droplet [J].
Chen, Qiushui ;
Utech, Stefanie ;
Chen, Dong ;
Prodanovic, Radivoje ;
Lin, Jin-Ming ;
Weitz, David A. .
LAB ON A CHIP, 2016, 16 (08) :1346-1349
[5]   Qualitative and Quantitative Analysis of Tumor Cell Metabolism via Stable Isotope Labeling Assisted Microfluidic Chip Electrospray Ionization Mass Spectrometry [J].
Chen, Qiushui ;
Wu, Jing ;
Zhang, Yandong ;
Lin, Jin-Ming .
ANALYTICAL CHEMISTRY, 2012, 84 (03) :1695-1701
[6]   Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering [J].
Chung, Bong Geun ;
Lee, Kwang-Ho ;
Khademhosseini, Ali ;
Lee, Sang-Hoon .
LAB ON A CHIP, 2012, 12 (01) :45-59
[7]   Integrated, Continuous Emulsion Creamer [J].
Cochrane, Wesley G. ;
Hackler, Amber L. ;
Cavett, Valerie J. ;
Price, Alexander K. ;
Paegel, Brian M. .
ANALYTICAL CHEMISTRY, 2017, 89 (24) :13227-13234
[8]   Microenvironmental regulation of tumour angiogenesis [J].
de Palma, Michele ;
Biziato, Daniela ;
Petrova, Tatiana V. .
NATURE REVIEWS CANCER, 2017, 17 (08) :457-474
[9]   Core-shell patterning of synthetic hydrogels via interfacial bioorthogonal chemistry for spatial control of stem cell behavior [J].
Dicker, K. T. ;
Song, J. ;
Moore, A. C. ;
Zhang, H. ;
Li, Y. ;
Burris, D. L. ;
Jia, X. ;
Fox, J. M. .
CHEMICAL SCIENCE, 2018, 9 (24) :5394-5404
[10]   Cell-in-cell phenomena, cannibalism, and autophagy: is there a relationship? [J].
Fais, Stefano ;
Overholtzer, Michael .
CELL DEATH & DISEASE, 2018, 9