Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer

被引:201
作者
Bourassa, J. Eli [1 ,2 ]
Alexander, Rafael N. [1 ,3 ,4 ]
Vasmer, Michael [5 ,6 ]
Patil, Ashlesha [1 ,7 ]
Tzitrin, Ilan [1 ,2 ]
Matsuura, Takaya [1 ,8 ]
Su, Daiqin [1 ]
Baragiola, Ben Q. [1 ,4 ]
Guha, Saikat [1 ,7 ]
Dauphinais, Guillaume [1 ]
Sabapathy, Krishna K. [1 ]
Menicucci, Nicolas C. [1 ,4 ]
Dhand, Ish [1 ]
机构
[1] Xanadu, Toronto, ON M5G 2C8, Canada
[2] Univ Toronto, Dept Phys, Toronto, ON, Canada
[3] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[4] RMIT Univ, Ctr Quantum Computat & Commun Technol, Sch Sci, Melbourne, Vic 3000, Australia
[5] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[6] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[7] Univ Arizona, Coll Opt Sci, Tucson, AZ 85719 USA
[8] Univ Tokyo, Grad Sch Engn, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
关键词
ERROR-CORRECTING CODES; ACCURACY THRESHOLD; COMPUTATION; GENERATION; STATES; CLIFFORD; SCHEME; QUBIT;
D O I
10.22331/q-2021-02-04-392
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional resource states comprising both bosonic qubits and squeezed vacuum states. The proposal exploits state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.
引用
收藏
页数:38
相关论文
共 175 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282
[3]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[4]   Universal quantum computation with temporal-mode bilayer square lattices [J].
Alexander, Rafael N. ;
Yokoyama, Shota ;
Furusawa, Akira ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW A, 2018, 97 (03)
[5]   One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator [J].
Alexander, Rafael N. ;
Wang, Pei ;
Sridhar, Niranjan ;
Chen, Moran ;
Pfister, Olivier ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW A, 2016, 94 (03)
[6]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[7]  
Aliferis P, 2008, QUANTUM INF COMPUT, V8, P181
[8]   Fault-tolerant quantum computation against biased noise [J].
Aliferis, Panos ;
Preskill, John .
PHYSICAL REVIEW A, 2008, 78 (05)
[9]   Polynomial-Time T-Depth Optimization of Clifford plus T Circuits Via Matroid Partitioning [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2014, 33 (10) :1476-1489
[10]   A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele ;
Roetteler, Martin .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2013, 32 (06) :818-830