Low-cycle bending fatigue and electrical conductivity of high-strength Cu/Nb nanocomposite wires

被引:11
作者
Rozhnov, A. B. [1 ]
Pantsyrny, V., I [2 ]
Kraynev, A., V [1 ]
Rogachev, S. O. [1 ]
Nikulin, S. A. [1 ]
Khlebova, N. E. [2 ]
Polikarpova, M., V [3 ]
Zadorozhnyy, M. Yu [1 ]
机构
[1] Natl Univ Sci & Technol MISIS, 4 Leninsky Pr, Moscow 119049, Russia
[2] Res & Prod Co NANOELECTRO, 5a Rogova St, Moscow 123060, Russia
[3] AA Bochvar High Technol Sci Res Inst Inorgan Mat, 5a Rogova St, Moscow 123060, Russia
关键词
Metal-matrix composites (MMCs); Low-cycle fatigue; Dynamic mechanical analyzer; Fractography; Electrical conductivity; IN-SITU; CU-FE; MICROSTRUCTURE; COMPOSITE; DEFORMATION; RESISTIVITY; EVOLUTION; HARDNESS; ALLOYS;
D O I
10.1016/j.ijfatigue.2019.105188
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The comparative low-cycle fatigue tests of the Cu/Nb nanocomposite wires obtained by the "melt-and-deform" method and pure copper samples were carried out using a dynamic mechanical analyzer (DMA). The fatigue tests were carried out using transverse bending scheme. It has been established that the fatigue fracture resistance characteristics of the Cu/Nb composites significantly higher as compared to that of pure copper samples. It has been found that the fatigue crack propagation in the Cu/Nb composites occurs at two scale levels. The effect of fatigue damage accumulation on the change in the electrical resistance of the Cu/Nb composites was studied.
引用
收藏
页数:8
相关论文
共 28 条
[1]   MICROSTRUCTURE AND STRENGTH OF CU-FE IN-SITU COMPOSITES OBTAINED FROM PREALLOYED CU-FE POWDERS [J].
BISELLI, C ;
MORRIS, DG .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (01) :163-176
[2]   Texture development of wire drawn Cu-Fe composites [J].
Brokmeier, HG ;
Bolmaro, RE ;
Signorelli, JA ;
Fourty, A .
PHYSICA B, 2000, 276 :888-889
[3]   Hardness, electrical resistivity, and modeling of in situ Cu-Nb microcomposites [J].
Deng, Liping ;
Han, Ke ;
Hartwig, Karl T. ;
Siegrist, Theo M. ;
Dong, Lianyang ;
Sun, Zeyuan ;
Yang, Xiaofang ;
Liu, Qing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 602 :331-338
[4]   Microstructure and texture evolution of Cu-Nb composite wires [J].
Deng, Liping ;
Yang, Xiaofang ;
Han, Ke ;
Lu, Yafeng ;
Liang, Ming ;
Liu, Qing .
MATERIALS CHARACTERIZATION, 2013, 81 :124-133
[5]   Cu/Nb Nanocomposite Wires Processed by Severe Plastic Deformation for Applications in High Pulsed Magnets: Effects of the Multi-Scale Microstructure on the Mechanical Properties [J].
Dubois, J. B. ;
Thilly, L. ;
Lecouturier, F. ;
Olier, P. ;
Renault, P. O. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)
[6]   68.4-T-LONG PULSE MAGNET - TEST OF HIGH-STRENGTH MICROCOMPOSITE CU/NB CONDUCTOR [J].
FONER, S .
APPLIED PHYSICS LETTERS, 1986, 49 (15) :982-983
[7]   Size effects influence on conducting properties of Cu-Nb alloy microcomposites at cryogenic temperature [J].
Guryev, Valentin V. ;
Polikarpova, Maria V. ;
Lukyanov, Pavel A. ;
Khlebova, Natalya E. ;
Pantsyrny, Viktor I. .
CRYOGENICS, 2018, 90 :56-59
[8]  
HOSFORD WF, 1964, T METALL SOC AIME, V230, P12
[9]   High Pressure Torsion: from Laminar Flow to Turbulence [J].
Kulagin, R. ;
Beygelzimer, Y. ;
Ivanisenko, Y. ;
Mazilkin, A. ;
Hahn, H. .
7TH INTERNATIONAL CONFERENCE ON NANOMATERIALS BY SEVERE PLASTIC DEFORMATION, 2017, 194
[10]   Thermal Stability and Properties of Deformation-Processed Cu-Fe In Situ Composites [J].
Liu, Keming ;
Jiang, Zhengyi ;
Zhao, Jingwei ;
Zou, Jin ;
Lu, Lei ;
Lu, Deping .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (05) :2255-2261