New exact Jacobi elliptic function solutions for some nonlinear evolution equations

被引:23
作者
Zhang, Huiqun [1 ]
机构
[1] Qingdao Univ, Dept Math, Qingdao 266071, Shandong, Peoples R China
关键词
D O I
10.1016/j.chaos.2005.11.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the Jacobi elliptic function solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact travelling wave solutions for nonlinear evolution equations. By this method some nonlinear evolution equations are investigated and new Jacobi elliptic function solutions are explicitly obtained with the aid of symbolic computation. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:653 / 660
页数:8
相关论文
共 12 条
[1]  
CARUELLO F, 1989, PHYSICA D, V39, P77
[2]  
Drazin P.G., 1989, SOLITONS INTRO
[3]   SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT METHOD AND MACSYMA [J].
HEREMAN, W ;
TAKAOKA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4805-4822
[4]   EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :810-814
[5]   SOLITON-SOLUTIONS OF A COUPLED KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PHYSICS LETTERS A, 1981, 85 (8-9) :407-408
[6]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[7]  
Matveev V. B., 1991, Darboux transformation and solitons, DOI DOI 10.1007/978-3-662-00922-2
[8]  
Miura MR., 1978, Backlund Transformation
[9]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[10]   Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics [J].
Wang, ML ;
Zhou, YB ;
Li, ZB .
PHYSICS LETTERS A, 1996, 216 (1-5) :67-75