共 13 条
Distinct r-tuples in integer partitions
被引:0
作者:
Archibald, Margaret
[1
,2
]
Blecher, Aubrey
[1
,2
]
Knopfmacher, Arnold
[1
,2
]
机构:
[1] Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] Univ Witwatersrand, Number Theory Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
基金:
新加坡国家研究基金会;
关键词:
Generating function;
Integer partitions;
r-tuples;
NUMBER;
D O I:
10.1007/s11139-019-00180-x
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We define P-r(q) to be the generating functionwhich counts the total number of distinct (sequential) r -tuples in partitions of n and Q(r)(q, u) to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r = 2 and r = 3. Then we use these methods to obtain P-r(q) and Q(r)(q, u) in the case of general r -tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n -> infinity. Finally we show that as r -> infinity, q(-r) P-r(q) converges to an explicitly determined power series.
引用
收藏
页码:237 / 252
页数:16
相关论文