Distinct r-tuples in integer partitions

被引:0
作者
Archibald, Margaret [1 ,2 ]
Blecher, Aubrey [1 ,2 ]
Knopfmacher, Arnold [1 ,2 ]
机构
[1] Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] Univ Witwatersrand, Number Theory Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Generating function; Integer partitions; r-tuples; NUMBER;
D O I
10.1007/s11139-019-00180-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define P-r(q) to be the generating functionwhich counts the total number of distinct (sequential) r -tuples in partitions of n and Q(r)(q, u) to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r = 2 and r = 3. Then we use these methods to obtain P-r(q) and Q(r)(q, u) in the case of general r -tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n -> infinity. Finally we show that as r -> infinity, q(-r) P-r(q) converges to an explicitly determined power series.
引用
收藏
页码:237 / 252
页数:16
相关论文
共 13 条
[11]   Limit distributions of smallest gap and largest repeated part in integer partitions [J].
Wagner, Stephan .
RAMANUJAN JOURNAL, 2011, 25 (02) :229-246
[12]   On the distribution of the longest run in number partitions [J].
Wagner, Stephan .
RAMANUJAN JOURNAL, 2009, 20 (02) :189-206
[13]   3 PROBLEMS IN COMBINATORIAL ASYMPTOTICS [J].
WILF, HS .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 35 (02) :199-207