Distinct r-tuples in integer partitions

被引:0
作者
Archibald, Margaret [1 ,2 ]
Blecher, Aubrey [1 ,2 ]
Knopfmacher, Arnold [1 ,2 ]
机构
[1] Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] Univ Witwatersrand, Number Theory Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Generating function; Integer partitions; r-tuples; NUMBER;
D O I
10.1007/s11139-019-00180-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define P-r(q) to be the generating functionwhich counts the total number of distinct (sequential) r -tuples in partitions of n and Q(r)(q, u) to be the corresponding bivariate generating function where u tracks the number of distinct r-tuples. These statistics generalise the number of distinct parts in a partition. In the early part of this paper we develop the tools by finding these generating functions for small cases r = 2 and r = 3. Then we use these methods to obtain P-r(q) and Q(r)(q, u) in the case of general r -tuples. These formulae are used to find the average number of distinct r-tuples for fixed r, as n -> infinity. Finally we show that as r -> infinity, q(-r) P-r(q) converges to an explicitly determined power series.
引用
收藏
页码:237 / 252
页数:16
相关论文
共 13 条
[1]  
Andrews G., 1988, The Theory of Partitions
[2]  
Andrews G.E., 2004, Integer Partitions
[3]  
[Anonymous], 1999, SPECIAL FUNCTIONS
[4]  
[Anonymous], The On-Line Encyclopedia of Integer Sequences-A338706-Number of 2-linear trees on n nodes
[5]  
Erdos P., 1941, DUKE MATH J, V8, P335, DOI 10.1215/S0012-7094-41-00826-8
[6]   THE NUMBER OF DISTINCT PART SIZES IN A RANDOM INTEGER PARTITION [J].
GOH, WMY ;
SCHMUTZ, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (01) :149-158
[7]   Analysis of some new partition statistics [J].
Grabner, Peter J. ;
Knopfmacher, Arnold .
RAMANUJAN JOURNAL, 2006, 12 (03) :439-454
[8]   A General Asymptotic Scheme for the Analysis of Partition Statistics [J].
Grabner, Peter J. ;
Knopfmacher, Arnold ;
Wagner, Stephan .
COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (06) :1057-1086
[9]  
Hirschhorn MD, 2014, FIBONACCI QUART, V52, P10
[10]   On the Distribution of Multiplicities in Integer Partitions [J].
Ralaivaosaona, Dimbinaina .
ANNALS OF COMBINATORICS, 2012, 16 (04) :871-889