Symplectic coordinates on PSL3(R)-Hitchin components

被引:0
|
作者
Choi, Suhyoung [1 ]
Jung, Hongtaek [2 ]
Kim, Hong Chan [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[2] Inst for Basic Sci Korea, Ctr Geometry & Phys, Pohang, South Korea
[3] Korea Univ, Dept Math Educ, Seoul, South Korea
关键词
Hitchin component; Goldman coordinates; Darboux coordinates; REAL PROJECTIVE-STRUCTURES; MODULI SPACES; GROUP SYSTEMS; LIE-GROUPS; REPRESENTATIONS; LECTURES; FLOWS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Goldman parametrizes the PSL3(R)-Hitchin component of a closed oriented hyperbolic surface of genus g by 16(g) - 16 parameters. Among them, 10(g) - 10 coordinates are canonical. We prove that the PSL3(R)-Hitchin component equipped with the Atiyah-Bott-Goldman symplectic form admits a global Darboux coordinate system such that the half of its coordinates are canonical Goldman coordinates. To this end, we show a version of the action-angle principle and the Zocca-type decomposition formula for the symplectic form of H. Kim and Guruprasad-Huebschmann-Jeffrey-Weinstein given to symplectic leaves of the Hitchin component.
引用
收藏
页码:1321 / 1386
页数:66
相关论文
共 1 条