共 1 条
Symplectic coordinates on PSL3(R)-Hitchin components
被引:0
|作者:
Choi, Suhyoung
[1
]
Jung, Hongtaek
[2
]
Kim, Hong Chan
[3
]
机构:
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[2] Inst for Basic Sci Korea, Ctr Geometry & Phys, Pohang, South Korea
[3] Korea Univ, Dept Math Educ, Seoul, South Korea
关键词:
Hitchin component;
Goldman coordinates;
Darboux coordinates;
REAL PROJECTIVE-STRUCTURES;
MODULI SPACES;
GROUP SYSTEMS;
LIE-GROUPS;
REPRESENTATIONS;
LECTURES;
FLOWS;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Goldman parametrizes the PSL3(R)-Hitchin component of a closed oriented hyperbolic surface of genus g by 16(g) - 16 parameters. Among them, 10(g) - 10 coordinates are canonical. We prove that the PSL3(R)-Hitchin component equipped with the Atiyah-Bott-Goldman symplectic form admits a global Darboux coordinate system such that the half of its coordinates are canonical Goldman coordinates. To this end, we show a version of the action-angle principle and the Zocca-type decomposition formula for the symplectic form of H. Kim and Guruprasad-Huebschmann-Jeffrey-Weinstein given to symplectic leaves of the Hitchin component.
引用
收藏
页码:1321 / 1386
页数:66
相关论文