Battery State of Charge Estimation Using Long Short-Term Memory Network and Extended Kalman Filter

被引:0
|
作者
Ni, Zichuan [1 ]
Yang, Ying [1 ]
Xiu, Xianchao [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Engn Sci, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
来源
PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE | 2020年
关键词
Long short-term memory network; State of charge estimation; Extended Kalman filter; Lithium-ion batteries; OPEN-CIRCUIT-VOLTAGE; LITHIUM-ION BATTERIES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a long short-term memory network structure is developed to estimate state of charge for lithium-ion batteries owing to its time series characteristic. It is further followed by the extended Kalman filter to alleviate the process noise. The proposed algorithm shows reduced root mean squared error as low as 0.48%, compared with traditional algorithms like linear regression, support vector regression and general shallow neural network. Our work provides a feasible way to estimate state of charge of batteries for general dynamic loading conditions.
引用
收藏
页码:5778 / 5783
页数:6
相关论文
共 50 条
  • [21] State of charge estimation for a group of lithium-ion batteries using long short-term memory neural network
    Almaita, Eyad
    Alshkoor, Saleh
    Abdelsalam, Emad
    Almomani, Fares
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [22] State of Charge Estimation using Extended Kalman Filter with Temperature Compensation
    Krishnan, Govindh J.
    Lal, Ajith A. A.
    Fabin, F. S.
    George, Alen Tinu
    Jacob, Jeevamma
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [23] Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation
    Sepasi, Saeed
    Roose, Leon R.
    Matsuura, Marc M.
    ENERGIES, 2015, 8 (06) : 5217 - 5233
  • [24] State of charge estimation of vanadium redox battery based on improved extended Kalman filter
    Qiu, Ya
    Li, Xin
    Chen, Wei
    Duan, Ze-min
    Yu, Ling
    ISA TRANSACTIONS, 2019, 94 : 326 - 337
  • [25] Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter
    Chen, Zheng
    Zhao, Hongqian
    Shu, Xing
    Zhang, Yuanjian
    Shen, Jiangwei
    Liu, Yonggang
    ENERGY, 2021, 228
  • [26] State-of-Charge Estimation for Li-Ion Battery using Extended Kalman Filter (EKF) and Central Difference Kalman Filter (CDKF)
    Sangwan, Venu
    Kumar, Rajesh
    Rathore, Akshay Kumar
    2017 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2017,
  • [27] Battery state of charge estimation with extended Kalman filter using third order Thevenin model
    Yao, Low Wen
    Prayun, Wirun A/I
    Aziz, J.A.
    Sutikno, Tole
    Telkomnika (Telecommunication Computing Electronics and Control), 2015, 13 (02) : 401 - 412
  • [28] State-of-Charge Estimation of Lithium-Ion Batteries via Long Short-Term Memory Network
    Yang, Fangfang
    Song, Xiangbao
    Xu, Fan
    Tsui, Kwok-Leung
    IEEE ACCESS, 2019, 7 : 53792 - 53799
  • [29] A Recurrent Neural Network with Long Short-Term Memory for State of Charge Estimation of Lithium-ion Batteries
    Li, Chaoran
    Xiao, Fei
    Fan, Yaxiang
    Yang, Guorun
    Zhang, Weiwei
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 1712 - 1716
  • [30] Enhanced lithium-ion battery state of charge estimation in electric vehicles using extended Kalman filter and deep neural network
    Djaballah, Younes
    Negadi, Karim
    Boudiaf, Mohamed
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (08) : 2864 - 2871