An integrated map of p53-binding sites and histone modification in the human ENCODE regions

被引:43
作者
Kaneshiro, Kiyofumi
Tsutsumi, Shuichi
Tsuji, Shingo
Shirahige, Katsuhiko
Aburatani, Hiroyuki
机构
[1] Univ Tokyo, Adv Sci & Technol Res Ctr, Genome Sci Div, Tokyo 1538904, Japan
[2] Tokyo Inst Technol, Div Gene Res, CBRI, Kanagawa 2268501, Japan
关键词
TP53; protein; historic; chromatin; oligonucleotide microarrays; HCT116; cells; human;
D O I
10.1016/j.ygeno.2006.09.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
TP53 (tumor protein p53; p53) regulates its target genes under various cellular stresses. By combining chromatin ii-nmunoprecipitation with oligonucleotide microarrays, we have mapped binding sites of p53 (p53-BS) in the genome of HCT 116 human colon carcinoma cells, along with those of acetylated H3, acetylated H4, and methylated H3-K4. We analyzed a 30-Mb portion of the human genome selected as a representative model by the ENCODE Consortium. In the region, we found 37 p53-13S, of which the p53-binding motif was present in 32 (86%). Acetylated historic H3 and H4 were detected at 14 (38%) and 33 (89%) of the p53-BS, respectively. A significant portion (58%) of H4 acetylation in the p53-13S was not accompanied by H3 acetylation. Acetyl H3 were preferentially located at the 5' and 3' ends of genes, whereas acetyl H4 were distributed widely across the genome. These results provide novel insights into how p53 binding coordinates with historic modification in human. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:178 / 188
页数:11
相关论文
共 51 条
[1]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[2]   Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes [J].
Ard, PG ;
Chatterjee, C ;
Kunjibettu, S ;
Adside, LR ;
Gralinski, LE ;
McMahon, SB .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (16) :5650-5661
[3]   Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases [J].
Barlev, NA ;
Liu, L ;
Chehab, NH ;
Mansfield, K ;
Harris, KG ;
Halazonetis, TD ;
Berger, SL .
MOLECULAR CELL, 2001, 8 (06) :1243-1254
[4]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[5]   Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity [J].
Candau, R ;
Scolnick, DM ;
Darpino, P ;
Ying, CY ;
Halazonetis, TD ;
Berger, SL .
ONCOGENE, 1997, 15 (07) :807-816
[6]   Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs [J].
Cawley, S ;
Bekiranov, S ;
Ng, HH ;
Kapranov, P ;
Sekinger, EA ;
Kampa, D ;
Piccolboni, A ;
Sementchenko, V ;
Cheng, J ;
Williams, AJ ;
Wheeler, R ;
Wong, B ;
Drenkow, J ;
Yamanaka, M ;
Patel, S ;
Brubaker, S ;
Tammana, H ;
Helt, G ;
Struhl, K ;
Gingeras, TR .
CELL, 2004, 116 (04) :499-509
[7]   Regulation of p53 activity through lysine methylation [J].
Chuikov, S ;
Kurash, JK ;
Wilson, JR ;
Xiao, B ;
Justin, N ;
Ivanov, GS ;
McKinney, K ;
Tempst, P ;
Prives, C ;
Gamblin, SJ ;
Barlev, NA ;
Reinberg, D .
NATURE, 2004, 432 (7015) :353-360
[8]   Numerous potentially functional but non-genic conserved sequences on human chromosome 21 [J].
Dermitzakis, ET ;
Reymond, A ;
Lyle, R ;
Scamuffa, N ;
Ucla, C ;
Deutsch, S ;
Stevenson, BJ ;
Flegel, V ;
Bucher, P ;
Jongeneel, CV ;
Antonarakis, SE .
NATURE, 2002, 420 (6915) :578-582
[9]   Regulation of p53 downstream genes [J].
El-Deiry, WS .
SEMINARS IN CANCER BIOLOGY, 1998, 8 (05) :345-357
[10]   DEFINITION OF A CONSENSUS BINDING-SITE FOR P53 [J].
ELDEIRY, WS ;
KERN, SE ;
PIETENPOL, JA ;
KINZLER, KW ;
VOGELSTEIN, B .
NATURE GENETICS, 1992, 1 (01) :45-49