Acceleration of vector bilateral filtering for hyperspectral imaging with GPU

被引:2
作者
Chen, Chong [1 ]
机构
[1] Univ Nevada, Natl Supercomp Inst, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA
关键词
3D‐ convolution; GPU; memory access optimization; vector bilateral filtering;
D O I
10.1002/cta.2973
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For hyperspectral imaging, the vector bilateral filter usually leads to better performance when compared with the traditional 2D bilateral filter. However, the large computation complexity of vector bilateral filtering makes it an extremely time cost algorithm. To overcome this challenge, a GPU-based acceleration for vector bilateral filtering called vBF_GPU was proposed in this paper. To improve the efficiency of the cache memory usage, multiple CUDA threads were utilized to processing one pixel of the hyperspectral image in vBF_GPU. The memory access operation of vBF_GPU was fully optimized to reduce the memory access cost of the GPU program. The experiment results indicated that vBF_GPU can provide more than 30x speedup when compared with an octa-core CPU implementation and more than 20x speedup when compared with a naive GPU implementation of vector bilateral filtering.
引用
收藏
页码:1502 / 1514
页数:13
相关论文
共 50 条
[41]   Sparse MTTKRP Acceleration for Tensor Decomposition on GPU [J].
Wijeratne, Sasindu ;
Kannan, Rajgopal ;
Prasanna, Viktor .
PROCEEDINGS OF THE 21ST ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2024, CF 2024, 2024, :88-96
[42]   MRCUDA: MapReduce acceleration framework based on GPU [J].
Wang, Jie ;
Yu, Yanshuo ;
Cui, Hang ;
Yang, Shenglai .
Journal of Computational Information Systems, 2015, 11 (07) :2615-2622
[43]   OpenCL Implementation of Unsharp Filtering on GPU and FPGA [J].
Unel, Ozge ;
Akgun, Toygar .
2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2014, :212-215
[44]   FFT and convolution performance in image filtering on GPU [J].
Fialka, Ondrej ;
Cadik, Martin .
INFORMATION VISUALIZATION-BOOK, 2006, :609-+
[45]   GPU accelerated novel particle filtering method [J].
Subhra Kanti Das ;
Chandan Mazumdar ;
Kumardeb Banerjee .
Computing, 2014, 96 :749-773
[46]   GPU accelerated novel particle filtering method [J].
Das, Subhra Kanti ;
Mazumdar, Chandan ;
Banerjee, Kumardeb .
COMPUTING, 2014, 96 (08) :749-773
[47]   GPU Framework for Change Detection in Multitemporal Hyperspectral Images [J].
Javier López-Fandiño ;
Dora B. Heras ;
Francisco Argüello ;
Mauro Dalla Mura .
International Journal of Parallel Programming, 2019, 47 :272-292
[48]   GPU Framework for Change Detection in Multitemporal Hyperspectral Images [J].
Lopez-Fandino, Javier ;
Heras, Dora B. ;
Argueello, Francisco ;
Dalla Mura, Mauro .
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2019, 47 (02) :272-292
[49]   GPU IMPLEMENTATION OF A LOSSY COMPRESSION ALGORITHM FOR HYPERSPECTRAL IMAGES [J].
Santos, Lucana ;
Vitulli, Raffaele ;
Fco. Lopez, Jose ;
Sarmiento, Roberto .
2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
[50]   Developing a portable GPU library for hyperspectral image processing [J].
Perez-Irizarry, Gabriel J. ;
De la Cruz-Sanchez, Francisco ;
Landron-Rivera, Brian A. ;
Santiago, Nayda G. ;
Velez-Reyes, Miguel .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVIII, 2012, 8390