On-surface lithium donor reaction enables decarbonated lithium garnets and compatible interfaces within cathodes

被引:110
作者
Yang, Ya-Nan [1 ,2 ]
Li, Ying-Xiang [1 ,2 ]
Li, Yi-Qiu [1 ]
Zhang, Tao [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, 1295 Dingxi Rd, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
BATTERIES; ELECTROLYTE; LI6.75LA3ZR1.75TA0.25O12; DIFFRACTION; INTERPHASE; LICOO2; AIR;
D O I
10.1038/s41467-020-19417-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium garnets have been widely studied as promising electrolytes that could enable the next-generation all-solid-state lithium batteries. However, upon exposure to atmospheric moisture and carbon dioxide, insulating lithium carbonate forms on the surface and deteriorates the interfaces within electrodes. Here, we report a scalable solid sintering method, defined by lithium donor reaction that allows for complete decarbonation of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and yields an active LiCoO2 layer for each garnet particle. The obtained LiCoO2 coated garnets composite is stable against air without any Li2CO3. Once working in a solid-state lithium battery, the LiCoO2-LLZTO@LiCoO2 composite cathode maintains 81% of the initial capacity after 180 cycles at 0.1 C. Eliminating CO2 evolution above 4.0 V is confirmed experimentally after transforming Li2CO3 into LiCoO2. These results indicate that Li2CO3 is no longer an obstacle, but a trigger of the intimate solid-solid interface. This strategy has been extended to develop a series of LLZTO@active layer materials.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Preferred orientation of polycrystalline LiCoO2 films [J].
Bates, JB ;
Dudney, NJ ;
Neudecker, BJ ;
Hart, FX ;
Jun, HP ;
Hackney, SA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :59-70
[2]   Sol-gel derived Li-La-Zr-O thin films as solid electrolytes for lithium-ion batteries [J].
Chen, Ru-Jun ;
Huang, Mian ;
Huang, Wen-Ze ;
Shen, Yang ;
Lin, Yuan-Hua ;
Nan, Ce-Wen .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (33) :13277-13282
[3]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[4]   Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Zhao, Ning ;
Guo, Xiangxin ;
Nan, Ce-Wen ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2019, 17 :309-316
[5]   Structure and electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 coated with Li-La-Zr-O solid electrolyte [J].
Deng, Yu-Feng ;
Zhao, Shi-Xi ;
Hu, Dao-Heng ;
Nan, Ce-Wen .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (01) :249-255
[6]   All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes [J].
Du, Fuming ;
Zhao, Ning ;
Li, Yiqiu ;
Chen, Cheng ;
Liu, Ziwei ;
Guo, Xiangxin .
JOURNAL OF POWER SOURCES, 2015, 300 :24-28
[7]  
Han F, 2018, JOULE, V2, P16, DOI [10.1016/j.joule.2018.02.007, 10.1016/j.joule.2017.12.014]
[8]   Fabrication of all solid-state lithium-ion batteries with three-dimensionally ordered composite electrode consisting of Li0.35La0.55TiO3 and LiMn2O4 [J].
Hara, Masanori ;
Nakano, Hiroyuki ;
Dokko, Kaoru ;
Okuda, Sayaka ;
Kaeriyama, Atsushi ;
Kanamura, Kiyoshi .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :485-489
[9]   Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries [J].
He, Minghui ;
Cui, Zhonghui ;
Chen, Cheng ;
Li, Yiqiu ;
Guo, Xiangxin .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (24) :11463-11470
[10]  
Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]