Inverse problem for the Schrodinger equation with non-self-adjoint matrix potential

被引:2
|
作者
Avdonin, S. A. [1 ,2 ]
Mikhaylov, A. S. [3 ,4 ]
Mikhaylov, V. S. [3 ]
Park, J. C. [1 ]
机构
[1] Univ Alaska Fairbanks, Dept Math & Stat, Fairbanks, AK 99775 USA
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119333, Russia
[3] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Dept, 27 Fontanka, St Petersburg 191023, Russia
[4] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
inverse problem; Schrö dinger equation; matrix potential; controllability; boundary control method;
D O I
10.1088/1361-6420/abd7cb
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the dynamical system with boundary control for the vector Schrodinger equation on the interval with a non-self-adjoint matrix potential. For this system, we study the inverse problem of recovering the matrix potential from the dynamical Neumann-to-Dirichlet operator. We first provide a method to recover spectral data for the Schrodinger system and consequently prove controllability of the system. We then develop a strategy for solving the inverse problem using this method with other techniques of the boundary control method.
引用
收藏
页数:19
相关论文
共 50 条