On the value-distribution of iterated integrals of the logarithm of the Riemann zeta-function I: Denseness

被引:2
作者
Endo, Kenta [1 ]
Inoue, Shota [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Riemann zeta-function; value-distribution; denseness; critical line; ZEROS;
D O I
10.1515/forum-2020-0075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider iterated integrals of log zeta(s) on certain vertical and horizontal lines. Here, the function zeta(s) is the Riemann zeta-function. It is a well-known open problem whether or not the values of the Riemann zeta-function on the critical line are dense in the complex plane. In this paper, we give a result for the denseness of the values of the iterated integrals on the horizontal lines. By using this result, we obtain the denseness of the values of integral(t)(0) log zeta(1/2 + it') dt' under the Riemann Hypothesis. Moreover, we show that, for any m >= 2, the denseness of the values of an m-times iterated integral on the critical line is equivalent to the Riemann Hypothesis.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 19 条
[1]  
Bohr H, 1914, J REINE ANGEW MATH, V144, P249
[2]  
Bohr H, 1932, ACTA MATH-DJURSHOLM, V58, P1, DOI 10.1007/BF02547773
[3]   On the theory of Riemann's zeta function in critical lines [J].
Bohr, H .
ACTA MATHEMATICA, 1916, 40 (01) :67-100
[4]   On the distribution of zeros of linear combinations of Euler products [J].
Bombieri, E ;
Hejhal, DA .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) :821-862
[5]   On the zeros of generalized Hurwitz zeta functions [J].
Chatterjee, T. ;
Gun, S. .
JOURNAL OF NUMBER THEORY, 2014, 145 :352-361
[6]  
Endo K., VALUE DISTRIBUTION I
[7]  
Garunkstis R, 2014, ABH MATH SEM HAMBURG, V84, P1, DOI 10.1007/s12188-014-0093-7
[8]  
Hattori T, 1999, J REINE ANGEW MATH, V507, P219
[9]  
Inoue S., 2019, PREPRINT
[10]   Distribution functions and the Riemann zeta function [J].
Jessen, Borge ;
Wintner, Aurel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1935, 38 (1-3) :48-88