Exact non-classical symmetry solutions of Arrhenius reaction-diffusion

被引:17
|
作者
Broadbridge, P. [1 ]
Bradshaw-Hajek, B. H. [2 ]
Triadis, D. [1 ,3 ]
机构
[1] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
[2] Univ S Australia, Sch Informat Technol & Math Sci, Plant Phen & Bioinformat Res Ctr, Adelaide, SA 5001, Australia
[3] Kyushu Univ, Inst Math Ind, Fukuoka 8190395, Japan
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2184期
关键词
Arrhenius; reaction-diffusion; heat conduction; plant root extraction; exact solutions; non-classical symmetries; REDUCTIONS; EQUATION;
D O I
10.1098/rspa.2015.0580
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exact solutions for nonlinear Arrhenius reaction-diffusion are constructed in n-dimensions. A single relationship between nonlinear diffusivity and the nonlinear reaction term leads to a non-classical Lie symmetry whose invariant solutions have a heat flux that is exponential in time (either growth or decay), and satisfying a linear Helmholtz equation in space. This construction also extends to heterogeneous diffusion wherein the nonlinear diffusivity factorizes to the product of a function of temperature and a function of position. Example solutions are given with applications to heat conduction in conjunction with either exothermic or endothermic reactions, and to soil-water flow in conjunction with water extraction by a web of plant roots.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Scalar Reaction-Diffusion Equations: Conditional Symmetry, Exact Solutions and Applications
    Cherniha, Roman
    Davydovych, Vasyl'
    NONLINEAR REACTION-DIFFUSION SYSTEMS: CONDITIONAL SYMMETRY, EXACT SOLUTIONS AND THEIR APPLICATIONS IN BIOLOGY, 2017, 2196 : 1 - 44
  • [2] Nonclassical Symmetry Solutions for Non-Autonomous Reaction-Diffusion Equations
    Bradshaw-Hajek, Bronwyn H.
    SYMMETRY-BASEL, 2019, 11 (02):
  • [3] Symmetry solutions for reaction-diffusion equations with spatially dependent diffusivity
    Bradshaw-Hajek, B. H.
    Moitsheki, R. J.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 30 - 38
  • [4] EXACT SOLUTIONS OF A REACTION-DIFFUSION EGUATION
    Skotar, Alena
    Yurik, Ivan
    UKRAINIAN FOOD JOURNAL, 2012, 1 (02) : 81 - +
  • [5] Exact solutions for logistic reaction-diffusion equations in biology
    Broadbridge, P.
    Bradshaw-Hajek, B. H.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):
  • [6] Exact Solutions of Reaction-Diffusion PDEs with Anisotropic Time Delay
    Polyanin, Andrei D.
    Sorokin, Vsevolod G.
    MATHEMATICS, 2023, 11 (14)
  • [7] On multidimensional exact solutions of a nonlinear reaction-diffusion system
    Kosov, A. A.
    Semenov, E. I.
    Tirskikh, V. V.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (02): : 225 - 239
  • [8] EXACT SOLUTIONS A COUPLED NONLINEAR REACTION-DIFFUSION SYSTEM
    李志斌
    吴是静
    Acta Mathematica Scientia, 1996, (S1) : 139 - 142
  • [9] Exact Solutions for Pattern Formation in a Reaction-Diffusion System
    Lin, Yezhi
    Liu, Yinping
    Li, Zhibin
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (05) : 307 - 315
  • [10] Non-linear instability and exact solutions to some delay reaction-diffusion systems
    Polyanin, Andrei D.
    Zhurov, Alexei I.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2014, 62 : 33 - 40