共 50 条
Molecular cluster perturbation theory. I. Formalism
被引:6
|作者:
Byrd, Jason N.
[1
]
Jindal, Nakul
[2
]
Molt, Robert W., Jr.
[1
]
Bartlett, Rodney J.
[1
]
Sanders, Beverly A.
[2
]
Lotrich, Victor F.
[1
]
机构:
[1] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
基金:
美国国家科学基金会;
关键词:
coupled-cluster perturbation theory;
molecular crystals;
self-consistent embedding theory;
MANY-BODY PERTURBATION;
BASIS-SET CONVERGENCE;
GAUSSIAN-BASIS SETS;
HYDROGEN-FLUORIDE;
COUPLED-CLUSTER;
ACCURATE CALCULATIONS;
HF;
SPECTRA;
BORON;
D O I:
10.1080/00268976.2015.1036145
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wave functions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wave functions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine-grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.
引用
收藏
页码:3459 / 3470
页数:12
相关论文