Ring-Opening Polymerization of Cyclic Esters in an Aqueous Dispersion

被引:11
作者
Harrier, Danielle D. [1 ]
Kenis, Paul J. A. [1 ]
Guironnet, Damien [1 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
EMULSION POLYMERIZATION; CATALYTIC POLYMERIZATION; BIODEGRADABLE POLYMERS; DRUG-DELIVERY; NANOPARTICLES; BIOMOLECULES; GENERATION; DROPLETS; WATER; PLA;
D O I
10.1021/acs.macromol.0c01300
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Aqueous polymer dispersions are commodity materials produced on a multimillion-ton scale annually. Today none of these materials are biodegradable because the process by which they are made is not compatible with the synthesis of biodegradable polymers. Herein, we report a droplet microfluidic encapsulation strategy for protecting a water incompatible ring-opening polymerization (ROP) catalyst from the aqueous phase, yielding biodegradable polymer particles dispersed in water. Polymerization yields 300 mu m sized particles comprised of biodegradable poly(delta-valerolactone) with molecular weights up to 19.5 kg mol(-1). The success of this approach relies on simultaneous precise control of the kinetics of polymerization, the rate of mass transfer, and fluid mechanics. The power of this methodology was demonstrated by the synthesis of cross-linked polymer particles through the copolymerization of bis(ecaprolactone-4-yl)propane and d-valerolactone, producing cross-linked polymer particles with molecular weights reaching 65.3 kg mol(-1). Overall, this encapsulation technique opens the door for the synthesis of biodegradable polymer latex and processable, biodegradable elastomers.
引用
收藏
页码:7767 / 7773
页数:7
相关论文
共 71 条
[1]  
Amass W, 1998, POLYM INT, V47, P89, DOI 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO
[2]  
2-F
[3]   Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering [J].
Amsden, Brian .
SOFT MATTER, 2007, 3 (11) :1335-1348
[4]   Biodegradable polymer matrix nanocomposites for tissue engineering: A review [J].
Armentano, I. ;
Dottori, M. ;
Fortunati, E. ;
Mattioli, S. ;
Kenny, J. M. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (11) :2126-2146
[5]   "Off-the-shelf" microfluidic devices for the production of liposomes for drug delivery [J].
Bottaro, E. ;
Nastruzzi, C. .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 64 :29-33
[6]   Emulsion polymerization mechanisms and kinetics [J].
Chern, C. S. .
PROGRESS IN POLYMER SCIENCE, 2006, 31 (05) :443-486
[7]  
Chern C.-S., 2008, PRINCIPLES APPL EMUL
[8]   Microfluidic methods for generating continuous droplet streams [J].
Christopher, G. F. ;
Anna, S. L. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (19) :R319-R336
[9]   PEGylated Nanoparticles Obtained through Emulsion Polymerization as Paclitaxel Carriers [J].
Colombo, Claudio ;
Morosi, Lavinia ;
Bello, Ezia ;
Ferrari, Raffaele ;
Licandro, Simonetta Andrea ;
Lupi, Monica ;
Ubezio, Paolo ;
Morbidelli, Massimo ;
Zucchetti, Massimo ;
D'Incalci, Maurizio ;
Moscatelli, Davide ;
Frapolli, Roberta .
MOLECULAR PHARMACEUTICS, 2016, 13 (01) :40-46
[10]   Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production [J].
Corrigan, Nathaniel ;
Zhernakov, Leonid ;
Hashim, Muhammad Hazim ;
Xu, Jiangtao ;
Boyer, Cyrille .
REACTION CHEMISTRY & ENGINEERING, 2019, 4 (07) :1216-1228