Hydrothermally synthesized barium titanate nanostructures from K2Ti4O9 precursors: Morphology evolution and its growth mechanism

被引:32
作者
Cao, Yang [1 ,2 ]
Zhu, Kongjun [1 ]
Wu, Qingliu [3 ]
Gu, Qilin [1 ]
Qiu, Jinhao [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
[2] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Sendai, Miyagi 9808578, Japan
[3] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
Layered compounds; Microstructure; Transmission electron microscopy (TEM); Crystal structure; BATIO3; SHAPE; NANOWIRES; NANOTUBES; NANORODS; TRANSFORMATION;
D O I
10.1016/j.materresbull.2014.05.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A morphology-controlled synthesis of barium titanate (BaTiO3) nanostructures from nano-whiskers to nanoparticles, were prepared via a hydrothermal strategy by manipulating the alkalinity and reaction temperature. Initially, the K2Ti4O9 precursors almost remain unchanged in the temperature of 80-160 degrees C at 0.1 M. By increasing the alkalinity and temperature, the BaTiO3 nanostructures initially undergoes ion exchange with precursors while retaining the morphology at the self-sacrifice of K2Ti4O9 nano-whiskers, followed by the formation of BaTiO3 nano-maces. Finally, recrystallization occurs and converts into nanoparticles at 120-220 degrees C at 0.8 M. Also, time-dependent experiment was conducted to probe the ion exchange process. The formation mechanism involves the generation of chemical site inducing the ion exchange process and the dissolution-precipitation reaction. By investigating the synthesis and morphology evolution of one-dimensional BaTiO3 nanostructures, this work may be of great significance for fabrication of other perovskite-type MTiO3 (M = Ca, Sr, Pb). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 30 条
[11]   Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction [J].
Kang, Sung-Oong ;
Park, Bae Ho ;
Kim, Yong-Il .
CRYSTAL GROWTH & DESIGN, 2008, 8 (09) :3180-3186
[12]   Synthesis of single-crystal barium titanate nanorods transformed from potassium titanate nanostructures [J].
Kang, Sung-Oong ;
Jang, Hoon-Sik ;
Kim, Ki-Bok ;
Park, Bae Ho ;
Jung, Maeng-Joon ;
Kim, Yong-Il .
MATERIALS RESEARCH BULLETIN, 2008, 43 (04) :996-1003
[13]  
Lee CT, 2000, J AM CERAM SOC, V83, P1098
[14]   Titanate Nanofiber Reactivity: Fabrication of MTiO3 (M = Ca, Sr, and Ba) Perovskite Oxides [J].
Li, Y. ;
Gao, X. P. ;
Li, G. R. ;
Pan, G. L. ;
Yan, T. Y. ;
Zhu, H. Y. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (11) :4386-4394
[15]  
Limmer SJ, 2002, ADV FUNCT MATER, V12, P59, DOI 10.1002/1616-3028(20020101)12:1<59::AID-ADFM59>3.0.CO
[16]  
2-B
[17]   Large-scale synthesis of single-crystal line perovskite nanostructures [J].
Mao, YB ;
Banerjee, S ;
Wong, SS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (51) :15718-15719
[18]   Hydrothermal synthesis of perovskite nanotubes [J].
Mao, YB ;
Banerjee, S ;
Wong, SS .
CHEMICAL COMMUNICATIONS, 2003, (03) :408-409
[19]   Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures [J].
Mao, Yuanbing ;
Wong, Stanislaus S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (25) :8217-8226
[20]   Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors [J].
Maxim, Fiorentina ;
Ferreira, Paula ;
Vilarinho, Paula M. ;
Reaney, Ian .
CRYSTAL GROWTH & DESIGN, 2008, 8 (09) :3309-3315