Spectral-Spatial Adaptive Sparse Representation for Hyperspectral Image Denoising

被引:130
|
作者
Lu, Ting [1 ]
Li, Shutao [1 ]
Fang, Leyuan [1 ]
Ma, Yi [2 ]
Benediktsson, Jon Atli [3 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] State Ocean Adm, Inst Oceanog 1, Qingdao 266003, Shandong, Peoples R China
[3] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 01期
基金
中国国家自然科学基金;
关键词
Hyperspectral image (HSI) denoising; sparse representation (SR); spatial similarity; spectral correlation; NOISE-REDUCTION; RESTORATION; REGRESSION; MODEL;
D O I
10.1109/TGRS.2015.2457614
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, a novel spectral-spatial adaptive sparse representation (SSASR) method is proposed for hyperspectral image (HSI) denoising. The proposed SSASR method aims at improving noise-free estimation for noisy HSI by making full use of highly correlated spectral information and highly similar spatial information via sparse representation, which consists of the following three steps. First, according to spectral correlation across bands, the HSI is partitioned into several nonoverlapping band subsets. Each band subset contains multiple continuous bands with highly similar spectral characteristics. Then, within each band subset, shape-adaptive local regions consisting of spatially similar pixels are searched in spatial domain. This way, spectral-spatial similar pixels can be grouped. Finally, the highly correlated and similar spectral-spatial information in each group is effectively used via the joint sparse coding, in order to generate better noise-free estimation. The proposed SSASR method is evaluated by different objective metrics in both real and simulated experiments. The numerical and visual comparison results demonstrate the effectiveness and superiority of the proposed method.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 50 条
  • [1] Adaptive Spectral-Spatial Compression of Hyperspectral Image With Sparse Representation
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02): : 671 - 682
  • [2] Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation
    Fang, Leyuan
    Li, Shutao
    Kang, Xudong
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (12): : 7738 - 7749
  • [3] HYPERSPECTRAL IMAGE DENOISING VIA COUPLED SPECTRAL-SPATIAL TENSOR REPRESENTATION
    Zhao, Lu
    Xu, Yang
    Wei, Zhihui
    Yu, Renping
    Qian, Ling
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4784 - 4787
  • [4] Destripe Hyperspectral Images with Spectral-spatial Adaptive Unidirectional Variation and Sparse Representation
    Zhou, Dabiao
    Wang, Dejiang
    Huo, Lijun
    Jia, Ping
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2016, 20 (06) : 752 - 761
  • [5] SPECTRAL-SPATIAL HYPERSPECTRAL CLASSIFICATION VIA SHAPE-ADAPTIVE SPARSE REPRESENTATION
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    Kang, Xudong
    Benediktsson, Jon Atli
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3430 - 3433
  • [6] Hyperspectral Image Denoising Employing a Spectral-Spatial Adaptive Total Variation Model
    Yuan, Qiangqiang
    Zhang, Liangpei
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10): : 3660 - 3677
  • [7] SPECTRAL-SPATIAL HYPERSPECTRAL IMAGE CLASSIFICATION VIA SUPERPIXEL MERGING AND SPARSE REPRESENTATION
    Fu, Wei
    Li, Shutao
    Fang, Leyuan
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4971 - 4974
  • [8] Spectral-Spatial Hyperspectral Image Classification Using a Multiscale Conservative Smoothing Scheme and Adaptive Sparse Representation
    Gao, Qishuo
    Lim, Samsung
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7718 - 7730
  • [9] Spectral-Spatial Kernel Regularized for Hyperspectral Image Denoising
    Yuan, Yuan
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07): : 3815 - 3832
  • [10] Spectral-spatial hyperspectral image ensemble classification via joint sparse representation
    Zhang, Erlei
    Zhang, Xiangrong
    Jiao, Licheng
    Li, Lin
    Hou, Biao
    PATTERN RECOGNITION, 2016, 59 : 42 - 54