Long waves in oceanic shallow water: Symbolic computation on the bilinear forms and Backlund transformations for the Whitham-Broer-Kaup system

被引:23
作者
Gao, Xin-Yi [1 ,2 ]
Guo, Yong-Jiang [1 ,2 ]
Shan, Wen-Rui [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
关键词
KADOMTSEV-PETVIASHVILI EQUATION; DOUBLE WRONSKIAN SOLUTIONS; DARBOUX TRANSFORMATIONS; SOLITON-INTERACTIONS; ROGUE WAVES; BREATHER; PROPAGATION; MODEL;
D O I
10.1140/epjp/s13360-020-00592-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the Earth, water is at the core of sustainable development and at the heart of adaptation to climate change. For the Enceladus, the sixth-largest moon of the Saturn, Cassini spacecraft discovers a possible global ocean of liquid water beneath an icy crust. Oceanic water waves are one of the most common phenomena in nature. Hereby, on the Whitham-Broer-Kaup system for the dispersive long waves in the oceanic shallow water, with respect to the horizontal velocity of the water wave and height of the deviation from the equilibrium position of the water, our binary Bell polynomials and symbolic computation lead to two sets of the bilinear forms, two sets of the N-soliton solutions and two sets of the auto-Backlund transformations with the sample solitons, where N is a positive integer. Our bilinear forms and auto-Backlund transformations are different from those reported in the existing literatures. All of our results are dependent on the coefficients in the system which represent different oceanic-water-wave dispersion/diffusion powers.
引用
收藏
页数:9
相关论文
共 83 条
[1]  
[Anonymous], 2020, WATER
[2]   Travelling wave solutions of Drinfel'd-Sokolov-Wilson, Whitham-Broer-Kaup and (2+1)-dimensional Broer-Kaup-Kupershmit equations and their applications [J].
Arshad, M. ;
Seadawy, A. R. ;
Lu, Dianchen ;
Wang, Jun .
CHINESE JOURNAL OF PHYSICS, 2017, 55 (03) :780-797
[3]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[4]   Solitons, Cnoidal Waves, Snoidal Waves and Other Solutions to Whitham-Broer-Kaup System [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Hilal, E. M. ;
Alshaery, A. A. ;
Biswas, A. .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05) :2119-2128
[5]   PROPAGATION OF LONG-CRESTED WATER WAVES. II. BORE PROPAGATION [J].
Bona, Jerry L. ;
Colin, Thierry ;
Guillope, Colette .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (10) :5543-5569
[6]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[7]   Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrodinger Equations in Nonlinear Optics [J].
Chen, Su-Su ;
Tian, Bo ;
Sun, Yan ;
Zhang, Chen-Rong .
ANNALEN DER PHYSIK, 2019, 531 (08)
[8]   Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrodinger system [J].
Chen, Su-Su ;
Tian, Bo ;
Liu, Lei ;
Yuan, Yu-Qiang ;
Zhang, Chen-Rong .
CHAOS SOLITONS & FRACTALS, 2019, 118 :337-346
[9]   A diffuse interface IBM for compressible flows with Neumann boundary condition [J].
Chen, You ;
Shu, Chang ;
Sun, Yu ;
Yang, Li Ming ;
Wang, Yan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (14-16)
[10]   Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma [J].
Chen, Yu-Qi ;
Tian, Bo ;
Qu, Qi-Xing ;
Li, He ;
Zhao, Xue-Hui ;
Tian, He-Yuan ;
Wang, Meng .
MODERN PHYSICS LETTERS B, 2020, 34 (26)