Higher integrability for doubly nonlinear parabolic systems

被引:21
作者
Boegelein, Verena [1 ]
Duzaar, Frank [2 ]
Kinnunen, Juha [3 ]
Scheven, Christoph [4 ]
机构
[1] Univ Salzburg, Fachbereich Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
[2] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Aalto Univ, Dept Math & Syst Anal, POB 11100, FI-00076 Aalto, Finland
[4] Univ Duisburg Essen, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 143卷
关键词
Doubly nonlinear parabolic equation; Higher integrability; Gradient estimates; Intrinsic geometry; DIFFUSIVE WAVE APPROXIMATION; LOCAL HOLDER CONTINUITY; SELF-IMPROVING PROPERTY; WEAK SOLUTIONS; GRADIENT; BOUNDEDNESS; REGULARITY; EQUATIONS; BEHAVIOR;
D O I
10.1016/j.matpur.2020.06.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves a local higher integrability result for the spatial gradient of weak solutions to doubly nonlinear parabolic systems. The new feature of the argument is that the intrinsic geometry involves the solution as well as its spatial gradient. The main result holds true for a range of parameters suggested by other nonlinear parabolic systems. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:31 / 72
页数:42
相关论文
共 35 条
[1]   On the diffusive wave approximation of the shallow water equations [J].
Alonso, R. ;
Santillana, M. ;
Dawson, C. .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2008, 19 :575-606
[2]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[3]  
Bamberger A., 1979, Lecture Notes in Phys., V91, P347
[4]  
Bögelein V, 2008, ANN ACAD SCI FENN-M, V33, P387
[5]   The higher integrability of weak solutions of porous medium systems [J].
Boegelein, Verena ;
Duzaar, Frank ;
Korte, Riikka ;
Scheven, Christoph .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1004-1034
[6]   Self-improving property of nonlinear higher order parabolic systems near the boundary [J].
Boegelein, Verena ;
Parviainen, Mikko .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (01) :21-54
[7]  
Vázquez JD, 2006, CUADERNOS HISPANOAM, P33
[8]  
DiBendetto E., 1993, DEGENERATE PARABOLIC, DOI 10.1007/978-1-4612-0895-2
[9]  
DiBenedetto E, 2012, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4614-1584-8
[10]   BMO estimates for the p-Laplacian [J].
Diening, L. ;
Kaplicky, P. ;
Schwarzacher, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) :637-650