miRTar2GO: a novel rule-based model learning method for cell line specific microRNA target prediction that integrates Ago2 CLIP-Seq and validated microRNA-target interaction data

被引:23
作者
Ahadi, Alireza [1 ,2 ]
Sablok, Gaurav [3 ]
Hutvagner, Gyorgy [2 ]
机构
[1] Univ Technol Sydney, Sch Software, Fac Engn & Informat Technol, POB 123, Sydney, NSW 2007, Australia
[2] Univ Technol Sydney, Ctr Hlth Technol, Fac Engn & Informat Technol, POB 123, Sydney, NSW 2007, Australia
[3] Univ Technol Sydney, Plant Funct Biol & Climate Change Cluster C3, POB 123, Sydney, NSW 2007, Australia
关键词
WIDE IDENTIFICATION; BINDING-SITES; MIRNA TARGETS; HUMAN GENES; PROTEIN; ARGONAUTE2; REVEALS; ACCESSIBILITY; BIOGENESIS; STARBASE;
D O I
10.1093/nar/gkw1185
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are similar to 19-22 nucleotides (nt) long regulatory RNAs that regulate gene expression by recognizing and binding to complementary sequences on mRNAs. The key step in revealing the function of a miRNA, is the identification of miRNA target genes. Recent biochemical advances including PAR-CLIP and HITS-CLIP allow for improved miRNA target predictions and are widely used to validate miRNA targets. Here, we present miRTar2GO, which is a model, trained on the common rules of miRNA-target interactions, Argonaute (Ago) CLIP-Seq data and experimentally validated miRNA target interactions. miRTar2GO is designed to predict miRNA target sites using more relaxed miRNA-target binding characteristics. More importantly, miRTar2GO allows for the prediction of cell-type specific miRNA targets. We have evaluated miRTar2GO against other widely used miRNA target prediction algorithms and demonstrated that miRTar2GO produced significantly higher F1 and G scores. Target predictions, binding specifications, results of the pathway analysis and gene ontology enrichment of miRNA targets are freely available at http://www.mirtar2go.org.
引用
收藏
页数:10
相关论文
共 74 条
[1]   Predicting effective microRNA target sites in mammalian mRNAs [J].
Agarwal, Vikram ;
Bell, George W. ;
Nam, Jin-Wu ;
Bartel, David P. .
ELIFE, 2015, 4
[2]   The impact of microRNAs on protein output [J].
Baek, Daehyun ;
Villen, Judit ;
Shin, Chanseok ;
Camargo, Fernando D. ;
Gygi, Steven P. ;
Bartel, David P. .
NATURE, 2008, 455 (7209) :64-U38
[3]   TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples [J].
Bandyopadhyay, Sanghamitra ;
Mitra, Ramkrishna .
BIOINFORMATICS, 2009, 25 (20) :2625-2631
[4]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[5]   Partition function and base pairing probabilities of RNA heterodimers [J].
Bernhart, Stephan H. ;
Tafer, Hakim ;
Mueckstein, Ulrike ;
Flamm, Christoph ;
Stadler, Peter F. ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2006, 1 (1)
[6]   An alternative mode of microRNA target recognition [J].
Chi, Sung Wook ;
Hannon, Gregory J. ;
Darnell, Robert B. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (03) :321-U80
[7]   Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps [J].
Chi, Sung Wook ;
Zang, Julie B. ;
Mele, Aldo ;
Darnell, Robert B. .
NATURE, 2009, 460 (7254) :479-486
[8]   Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types [J].
Clark, Peter M. ;
Loher, Phillipe ;
Quann, Kevin ;
Brody, Jonathan ;
Londin, Eric R. ;
Rigoutsos, Isidore .
SCIENTIFIC REPORTS, 2014, 4
[9]   RNA Binding Proteins in the miRNA Pathway [J].
Connerty, Patrick ;
Ahadi, Alireza ;
Hutvagner, Gyorgy .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (01)
[10]  
Coronnello C, 2013, NUCLEIC ACIDS RES, P1