Uncertainty quantification for chaotic computational fluid dynamics

被引:26
作者
Yu, Y. [1 ]
Zhao, M.
Lee, T.
Pestieau, N.
Bo, W.
Glimm, J.
Grove, J. W.
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA
关键词
uncertainty quantification; chaotic flow;
D O I
10.1016/j.jcp.2006.03.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We seek error models for simulations that model chaotic flow. Stable statistics for the solution and for the error are obtained after suitable averaging procedures. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 216
页数:17
相关论文
共 50 条
[41]   Advances in verification and validation in computational fluid dynamics [J].
Chen J. ;
Xiao W. ;
Zhao W. ;
Zhang P. ;
Yang F. ;
Jin T. ;
Guo Y. ;
Wu X. ;
Chen J. ;
Wang R. ;
Li L. .
Advances in Mechanics, 2023, 53 (03) :626-660
[42]   Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration [J].
Assyr Abdulle ;
Giacomo Garegnani .
Statistics and Computing, 2020, 30 :907-932
[43]   Random time step probabilistic methods for uncertainty quantification in chaotic and geometric numerical integration [J].
Abdulle, Assyr ;
Garegnani, Giacomo .
STATISTICS AND COMPUTING, 2020, 30 (04) :907-932
[44]   Uncertainty quantification in molecular dynamics studies of the glass transition temperature [J].
Patrone, Paul N. ;
Dienstfrey, Andrew ;
Browning, Andrea R. ;
Tucker, Samuel ;
Christensen, Stephen .
POLYMER, 2016, 87 :246-259
[45]   Uncertainty quantification in the dynamics of a guyed mast subjected to wind load [J].
Ballaben, Jorge S. ;
Sampaio, Rubens ;
Rosales, Marta B. .
ENGINEERING STRUCTURES, 2017, 132 :456-470
[46]   Sensitive parameter identification and uncertainty quantification for the stability of pipeline conveying fluid [J].
Alvis, T. ;
Ceballes, S. ;
Abdelkefi, A. .
INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2022, 18 (02) :327-351
[47]   Sensitive parameter identification and uncertainty quantification for the stability of pipeline conveying fluid [J].
T. Alvis ;
S. Ceballes ;
A. Abdelkefi .
International Journal of Mechanics and Materials in Design, 2022, 18 :327-351
[48]   CUQIpy: I. Computational uncertainty quantification for inverse problems in Python']Python [J].
Riis, Nicolai A. B. ;
Alghamdi, Amal M. A. ;
Uribe, Felipe ;
Christensen, Silja L. ;
Afkham, Babak M. ;
Hansen, Per Christian ;
Jorgensen, Jakob S. .
INVERSE PROBLEMS, 2024, 40 (04)
[49]   Experimental validation and uncertainty quantification in wave-based computational room acoustics [J].
Thydal, Tobias ;
Pind, Finnur ;
Jeong, Cheol-Ho ;
Engsig-Karup, Allan P. .
APPLIED ACOUSTICS, 2021, 178
[50]   A Survey of Computational Intelligence Techniques for Wind Power Uncertainty Quantification in Smart Grids [J].
Quan, Hao ;
Khosravi, Abbas ;
Yang, Dazhi ;
Srinivasan, Dipti .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (11) :4582-4599