Uncertainty quantification for chaotic computational fluid dynamics

被引:26
作者
Yu, Y. [1 ]
Zhao, M.
Lee, T.
Pestieau, N.
Bo, W.
Glimm, J.
Grove, J. W.
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA
关键词
uncertainty quantification; chaotic flow;
D O I
10.1016/j.jcp.2006.03.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We seek error models for simulations that model chaotic flow. Stable statistics for the solution and for the error are obtained after suitable averaging procedures. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 216
页数:17
相关论文
共 50 条
  • [21] Statistical Framework for Uncertainty Quantification in Computational Molecular Modeling
    Rasheed, Muhibur
    Clement, Nathan
    Bhowmick, Abhishek
    Bajaj, Chandrajit L.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (04) : 1154 - 1167
  • [22] Statistical Framework for Uncertainty Quantification in Computational Molecular Modeling
    Rasheed, Muhibur
    Clement, Nathan
    Bhowmick, Abhishek
    Bajaj, Chandrajit
    PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, : 146 - 155
  • [23] Bayesian posteriors of uncertainty quantification in computational structural dynamics for low-and medium-frequency ranges
    Soize, C.
    COMPUTERS & STRUCTURES, 2013, 126 : 41 - 55
  • [24] UNCERTAINTY QUANTIFICATION OF THE DYNAMICS OF A WAVE ENERGY CONVERTER
    Paredes, Guilheme Moura
    Eskilsson, Claes
    Kofoed, Jens Peter
    MARINE 2019: COMPUTATIONAL METHODS IN MARINE ENGINEERING VIII: VIII INTERNATIONAL CONFERENCE ONCOMPUTATIONAL METHODS IN MARINE ENGINEERING (MARINE 2019), 2019, : 157 - 168
  • [25] Uncertainty Quantification for Deep Unrolling-Based Computational Imaging
    Ekmekci, Canberk
    Cetin, Mujdat
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 1195 - 1209
  • [26] Uncertainty quantification by ensemble learning for computational optical form measurements
    Hoffmann, Lara
    Fortmeier, Ines
    Elster, Clemens
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [27] ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS
    Liang, Bin
    Mahadevan, Sankaran
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2011, 1 (02) : 147 - 161
  • [28] Experimental case studies for uncertainty quantification in structural dynamics
    Adhikari, S.
    Friswell, M. I.
    Lonkar, K.
    Sarkar, A.
    PROBABILISTIC ENGINEERING MECHANICS, 2009, 24 (04) : 473 - 492
  • [29] Multi-frequency model reduction for uncertainty quantification in computational vibroacoutics
    J. Reyes
    C. Desceliers
    C. Soize
    L. Gagliardini
    Computational Mechanics, 2022, 69 : 661 - 682
  • [30] IMPROVED EFFICIENCY OF A MULTI-INDEX FEM FOR COMPUTATIONAL UNCERTAINTY QUANTIFICATION
    Dick, Josef
    Feischl, Michael
    Schwab, Christoph
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1744 - 1769