Uncertainty quantification for chaotic computational fluid dynamics

被引:26
作者
Yu, Y. [1 ]
Zhao, M.
Lee, T.
Pestieau, N.
Bo, W.
Glimm, J.
Grove, J. W.
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA
关键词
uncertainty quantification; chaotic flow;
D O I
10.1016/j.jcp.2006.03.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We seek error models for simulations that model chaotic flow. Stable statistics for the solution and for the error are obtained after suitable averaging procedures. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 216
页数:17
相关论文
共 50 条
[21]   Statistical Framework for Uncertainty Quantification in Computational Molecular Modeling [J].
Rasheed, Muhibur ;
Clement, Nathan ;
Bhowmick, Abhishek ;
Bajaj, Chandrajit L. .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (04) :1154-1167
[22]   Statistical Framework for Uncertainty Quantification in Computational Molecular Modeling [J].
Rasheed, Muhibur ;
Clement, Nathan ;
Bhowmick, Abhishek ;
Bajaj, Chandrajit .
PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, :146-155
[23]   Bayesian posteriors of uncertainty quantification in computational structural dynamics for low-and medium-frequency ranges [J].
Soize, C. .
COMPUTERS & STRUCTURES, 2013, 126 :41-55
[24]   UNCERTAINTY QUANTIFICATION OF THE DYNAMICS OF A WAVE ENERGY CONVERTER [J].
Paredes, Guilheme Moura ;
Eskilsson, Claes ;
Kofoed, Jens Peter .
MARINE 2019: COMPUTATIONAL METHODS IN MARINE ENGINEERING VIII: VIII INTERNATIONAL CONFERENCE ONCOMPUTATIONAL METHODS IN MARINE ENGINEERING (MARINE 2019), 2019, :157-168
[25]   Uncertainty Quantification for Deep Unrolling-Based Computational Imaging [J].
Ekmekci, Canberk ;
Cetin, Mujdat .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 :1195-1209
[26]   Uncertainty quantification by ensemble learning for computational optical form measurements [J].
Hoffmann, Lara ;
Fortmeier, Ines ;
Elster, Clemens .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03)
[27]   ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS [J].
Liang, Bin ;
Mahadevan, Sankaran .
INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2011, 1 (02) :147-161
[28]   Experimental case studies for uncertainty quantification in structural dynamics [J].
Adhikari, S. ;
Friswell, M. I. ;
Lonkar, K. ;
Sarkar, A. .
PROBABILISTIC ENGINEERING MECHANICS, 2009, 24 (04) :473-492
[29]   Multi-frequency model reduction for uncertainty quantification in computational vibroacoutics [J].
J. Reyes ;
C. Desceliers ;
C. Soize ;
L. Gagliardini .
Computational Mechanics, 2022, 69 :661-682
[30]   IMPROVED EFFICIENCY OF A MULTI-INDEX FEM FOR COMPUTATIONAL UNCERTAINTY QUANTIFICATION [J].
Dick, Josef ;
Feischl, Michael ;
Schwab, Christoph .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) :1744-1769