Multi-fidelity machine learning models for accurate bandgap predictions of solids

被引:251
作者
Pilania, G. [1 ]
Gubernatis, J. E. [2 ]
Lookman, T. [2 ]
机构
[1] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87544 USA
关键词
Double perovskites; Elpasolites; Materials informatics; Information fusion; TOTAL-ENERGY CALCULATIONS; ELECTRONIC-STRUCTURE; APPROXIMATION; DESIGN; CLASSIFICATION; OPTIMIZATION; REGRESSION; CHEMISTRY; DISCOVERY; DATABASE;
D O I
10.1016/j.commatsci.2016.12.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. In addition, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. Using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelity quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:156 / 163
页数:8
相关论文
共 70 条
[1]   First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method [J].
Anisimov, VI ;
Aryasetiawan, F ;
Lichtenstein, AI .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (04) :767-808
[2]   Screening for high-performance piezoelectrics using high-throughput density functional theory [J].
Armiento, Rickard ;
Kozinsky, Boris ;
Fornari, Marco ;
Ceder, Gerbrand .
PHYSICAL REVIEW B, 2011, 84 (01)
[3]   The GW method [J].
Aryasetiawan, F ;
Gunnarsson, O .
REPORTS ON PROGRESS IN PHYSICS, 1998, 61 (03) :237-312
[4]   Computational design of low-band-gap double perovskites [J].
Berger, Robert F. ;
Neaton, Jeffrey B. .
PHYSICAL REVIEW B, 2012, 86 (16)
[5]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[6]   Learning scheme to predict atomic forces and accelerate materials simulations [J].
Botu, V. ;
Ramprasad, R. .
PHYSICAL REVIEW B, 2015, 92 (09)
[7]   Adaptive machine learning framework to accelerate ab initio molecular dynamics [J].
Botu, Venkatesh ;
Ramprasad, Rampi .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1074-1083
[8]   Calculated optical absorption of different perovskite phases [J].
Castelli, Ivano E. ;
Thygesen, Kristian S. ;
Jacobsen, Karsten W. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (23) :12343-12349
[9]   New cubic perovskites for one- and two-photon water splitting using the computational materials repository [J].
Castelli, Ivano E. ;
Landis, David D. ;
Thygesen, Kristian S. ;
Dahl, Soren ;
Chorkendorff, Ib ;
Jaramillo, Thomas F. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :9034-9043
[10]   Computational screening of perovskite metal oxides for optimal solar light capture [J].
Castelli, Ivano E. ;
Olsen, Thomas ;
Datta, Soumendu ;
Landis, David D. ;
Dahl, Soren ;
Thygesen, Kristian S. ;
Jacobsen, Karsten W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5814-5819