Quantum liouville theory in the background field formalism I. Compact Riemann surfaces

被引:14
作者
Takhtajan, Leon A. [1 ]
Teo, Lee-Peng
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[2] Multimedia Univ, Fac Informat Technol, Cyberjaya 63100, Selangor, Malaysia
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-006-0091-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Polyakov's functional integral approach and the Liouville action functional defined in [ZT87c] and [TT03a], we formulate quantum Liouville theory on a compact Riemann surface X of genus g > 1. For the partition function (X) and correlation functions with the stress-energy tensor components (Pi(=1n)(i) T(zi) Pi(l)(k=1) (T) over bar((w) over bar (k)), we describe Feynman rules in the background field formalism by expanding corresponding functional integrals around a classical solution, the hyperbolic metric on X. Extending analysis in [Tak93, Tak94, Tak96a, Tak96b], we define the regularization scheme for any choice of the global coordinate on X. For the Schottky and quasi-Fuchsian global coordinates, we rigorously prove that one- and two-point correlation functions satisfy conformal Ward identities in all orders of the perturbation theory. Obtained results are interpreted in terms of complex geometry of the projective line bundle E-C = lambda H-c/2 over the moduli space M-g where c is the central charge and lambda (H) is the Hodge line bundle, and provide the Friedan-Shenker [FS87] complex geometry approach to CFT with the first non-trivial example besides rational models.
引用
收藏
页码:135 / 197
页数:63
相关论文
共 37 条
[1]  
Ahlfors L., 1987, Lectures on Quasiconformal Mappings
[2]   SOME REMARKS ON TEICHMULLERS SPACE OF RIEMANN SURFACES [J].
AHLFORS, LV .
ANNALS OF MATHEMATICS, 1961, 74 (01) :171-&
[3]   Generating functional in CFT and effective action for two-dimensional quantum gravity on higher genus Riemann surfaces [J].
Aldrovandi, E ;
Takhtajan, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :29-67
[4]  
Belavin A. A., 1986, Soviet Physics - JETP, V64, P214
[5]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[6]  
BERS L, 1970, SEVERAL COMPLEX VARI, P9
[7]   ON DETERMINANTS OF LAPLACIANS ON RIEMANN SURFACES [J].
DHOKER, E ;
PHONG, DH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (04) :537-545
[8]   2-POINT AND 3-POINT FUNCTIONS IN LIOUVILLE THEORY [J].
DORN, H ;
OTTO, HJ .
NUCLEAR PHYSICS B, 1994, 429 (02) :375-388
[9]   CONFORMAL AND CURRENT-ALGEBRAS ON A GENERAL RIEMANN SURFACE [J].
EGUCHI, T ;
OOGURI, H .
NUCLEAR PHYSICS B, 1987, 282 (02) :308-328
[10]   THE ANALYTIC-GEOMETRY OF TWO-DIMENSIONAL CONFORMAL FIELD-THEORY [J].
FRIEDAN, D ;
SHENKER, S .
NUCLEAR PHYSICS B, 1987, 281 (3-4) :509-545