New power-law scaling for friction factor of extreme Reynolds number pipe flows

被引:18
作者
Anbarlooei, H. R. [1 ]
Cruz, D. O. A. [2 ]
Ramos, F. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Math, Dept Appl Math, Ctr Tecnol, Bloco C,Av Athos Silveira Ramos,Cidade Univ, BR-21941909 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Ctr Tecnol, COPPE, Mech Engn Program, Bloco G,Rua Horacio Macedo,Cidade Univ, BR-21941450 Rio De Janeiro, Brazil
关键词
QUANTIFYING WALL TURBULENCE; MEAN VELOCITY DISTRIBUTION; DRAG-REDUCTION; SHEAR-STRESS; ATTACHED EDDIES; SKIN-FRICTION; CHANNEL FLOW; RE-TAU; PROFILE; RANGE;
D O I
10.1063/5.0020665
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We report a novel power-law scaling for the friction factor of incompressible Newtonian fluid flows at extreme Reynolds numbers: f = C-e/Re-2/13. The formula is based on a new phenomenology for coherent structures that dominate the momentum exchange in meso-layer regions and scales with the geometric mean <mml:msqrt>delta delta nu</mml:msqrt>, where delta (nu) is the viscous length scale and delta is the pipe radius. Comparisons with the experimental data from the Princeton Superpipe and the Hi-Reff Facility at the National Metrology Institute of Japan show excellent agreement for a large range of Reynolds numbers. This work, along with the recent empirical evidence, suggests a possible change in the mechanism of turbulent momentum transfer for pipe flows in extreme Reynolds numbers.
引用
收藏
页数:12
相关论文
共 70 条
[1]   Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at Reτ=1000 [J].
Agostini, L. ;
Touber, E. ;
Leschziner, M. A. .
JOURNAL OF FLUID MECHANICS, 2014, 743 :606-635
[2]   Contribution of large-scale motions to the Reynolds shear stress in turbulent pipe flows [J].
Ahn, Junsun ;
Lee, Jinyoung ;
Sung, Hyung Jin .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2017, 66 :209-216
[3]   On the connection between Kolmogorov microscales and friction in pipe flows of viscoplastic fluids [J].
Anbarlooei, H. R. ;
Cruz, D. O. A. ;
Ramos, F. ;
Santos, C. M. M. ;
Silva Freire, A. P. .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 :69-77
[4]   Phenomenological friction equation for turbulent flow of Bingham fluids [J].
Anbarlooei, H. R. ;
Cruz, D. O. A. ;
Ramos, F. ;
Santos, Cecilia M. M. ;
Silva Freire, A. P. .
PHYSICAL REVIEW E, 2017, 96 (02)
[5]   Phenomenological Blasius-type friction equation for turbulent power-law fluid flows [J].
Anbarlooei, H. R. ;
Cruz, D. O. A. ;
Ramos, F. ;
Silva Freire, A. P. .
PHYSICAL REVIEW E, 2015, 92 (06)
[6]   Analyzing the spectral energy cascade in turbulent channel flow [J].
Andrade, Joao Rodrigo ;
Martins, Ramon Silva ;
Mompean, Gilmar ;
Thais, Laurent ;
Gatski, Thomas B. .
PHYSICS OF FLUIDS, 2018, 30 (06)
[7]   Distance-from-the-wall scaling of turbulent motions in wall-bounded flows [J].
Baidya, R. ;
Philip, J. ;
Hutchins, N. ;
Monty, J. P. ;
Marusic, I. .
PHYSICS OF FLUIDS, 2017, 29 (02)
[8]   Estimating the value of von Karman's constant in turbulent pipe flow [J].
Bailey, S. C. C. ;
Vallikivi, M. ;
Hultmark, M. ;
Smits, A. J. .
JOURNAL OF FLUID MECHANICS, 2014, 749 :79-98
[9]  
Barenblatt G, 2003, CAMBRIDGE TEXTS APPL, DOI DOI 10.1017/CBO9780511814921
[10]  
Brown G.O., 2002, AM SOC CIVIL ENG, V4, P34, DOI [10.1061/40650(2003)4, DOI 10.1061/40650(2003)4,URL:HTTPS://ASCELIBRARY.ORG/DOI/ABS/10.1061/40650(2003)4]