Improved empirical Bayes ridge regression estimators under multicollinearity

被引:9
作者
Kubokawa, T
Srivastava, MS
机构
[1] Univ Tokyo, Fac Econ, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Toronto, Dept Stat, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
empirical Bayes method; minimaxity; multicollinearity; multiple regression; principal component method; ridge regression;
D O I
10.1081/STA-120037452
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the problem of estimating the regression parameters in a multiple linear regression model when the multicollinearity is present. Under the assumption of normality, we present three empirical Bayes estimators. One of them shrinks the least squares (LS) estimator towards the principal component. The second one is a hierarchical empirical Bayes estimator shrinking the LS estimator twice. The third one is obtained by choosing different priors for the two sets of regression parameters that arise in the case of multicollinearity; this estimator is termed decomposed empirical Bayes estimator. These proposed estimators are not only proved to be uniformly better than the LS estimator, that is, minimax in terms of risk under the Strawderman loss function, but also shown to be useful in the multicollinearity cases through simulation and empirical studies.
引用
收藏
页码:1943 / 1973
页数:31
相关论文
共 17 条
[1]  
BEISLEY DA, 1984, AM STAT, V38, P73
[2]  
Bjorkstrom A, 1996, J ROY STAT SOC B MET, V58, P703
[3]   A generalized view on continuum regression [J].
Björkström, A ;
Sundberg, R .
SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (01) :17-30
[4]   MINIMAX RIDGE-REGRESSION ESTIMATION [J].
CASELLA, G .
ANNALS OF STATISTICS, 1980, 8 (05) :1036-1056
[5]   FAMILIES OF MINIMAX ESTIMATORS OF MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION [J].
EFRON, B ;
MORRIS, C .
ANNALS OF STATISTICS, 1976, 4 (01) :11-21
[6]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[7]  
LINDLEY DV, 1972, J ROY STAT SOC B, V34, P1
[8]  
MARQUARDT DW, 1975, AM STAT, V12, P3
[9]   Minimaxity of empirical Bayes estimators shrinking toward the grand mean when variances are unequal [J].
Shinozaki, N ;
Chang, YT .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (01) :183-199
[10]   MINIMAXITY OF EMPIRICAL BAYES ESTIMATORS OF THE MEANS OF INDEPENDENT NORMAL VARIABLES WITH UNEQUAL VARIANCES [J].
SHINOZAKI, N ;
CHANG, YT .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1993, 22 (08) :2147-2169