Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans Genomic Prediction

被引:79
作者
Wray, Naomi R. [1 ,2 ]
Kemper, Kathryn E. [1 ]
Hayes, Benjamin J. [3 ]
Goddard, Michael E. [4 ,5 ]
Visscher, Peter M. [1 ,2 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4067, Australia
[2] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4067, Australia
[3] Univ Queensland, Ctr Anim Sci, Queensland Alliance Agr & Food Innovat, St Lucia, Qld 4072, Australia
[4] AgriBio, Ctr AgriBiosci, Dept Econ Dev Jobs Transport & Resources, Bundoora, Vic, Australia
[5] Univ Melbourne, Fac Land & Food Resources, Parkville, Vic, Australia
基金
英国医学研究理事会;
关键词
polygenic risk score; estimated breeding values; PRS; EBV; segregation variance; within family variance; GenPred; Genomic Prediction; GENETIC-RISK PREDICTION; WIDE ASSOCIATION; LINKAGE DISEQUILIBRIUM; ARTIFICIAL SELECTION; INCREASES ACCURACY; BIPOLAR DISORDER; DISEASE; COMMON; SCHIZOPHRENIA; MODELS;
D O I
10.1534/genetics.119.301859
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In this Review, we focus on the similarity of the concepts underlying prediction of estimated breeding values (EBVs) in livestock and polygenic risk scores (PRS) in humans. Our research spans both fields and so we recognize factors that are very obvious for those in one field, but less so for those in the other. Differences in family size between species is the wedge that drives the different viewpoints and approaches. Large family size achievable in nonhuman species accompanied by selection generates a smaller effective population size, increased linkage disequilibrium and a higher average genetic relationship between individuals within a population. In human genetic analyses, we select individuals unrelated in the classical sense (coefficient of relationship <0.05) to estimate heritability captured by common SNPs. In livestock data, all animals within a breed are to some extent "related," and so it is not possible to select unrelated individuals and retain a data set of sufficient size to analyze. These differences directly or indirectly impact the way data analyses are undertaken. In livestock, genetic segregation variance exposed through samplings of parental genomes within families is directly observable and taken for granted. In humans, this genomic variation is under-recognized for its contribution to variation in polygenic risk of common disease, in both those with and without family history of disease. We explore the equation that predicts the expected proportion of variance explained using PRS, and quantify how GWAS sample size is the key factor for maximizing accuracy of prediction in both humans and livestock. Last, we bring together the concepts discussed to address some frequently asked questions.
引用
收藏
页码:1131 / 1141
页数:11
相关论文
共 83 条
[1]   Accurate and Robust Genomic Prediction of Celiac Disease Using Statistical Learning [J].
Abraham, Gad ;
Tye-Din, Jason A. ;
Bhalala, Oneil G. ;
Kowalczyk, Adam ;
Zobel, Justin ;
Inouye, Michael .
PLOS GENETICS, 2014, 10 (02)
[2]  
[Anonymous], 2019, The Economist
[3]   Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics [J].
Beaumont, Robin N. ;
Warrington, Nicole M. ;
Cavadino, Alana ;
Tyrrell, Jessica ;
Nodzenski, Michael ;
Horikoshi, Momoko ;
Geller, Frank ;
Myhre, Ronny ;
Richmond, Rebecca C. ;
Paternoster, Lavinia ;
Bradfield, Jonathan P. ;
Kreiner-Moller, Eskil ;
Huikari, Ville ;
Metrustry, Sarah ;
Lunetta, Kathryn L. ;
Painter, Jodie N. ;
Hottenga, Jouke-Jan ;
Allard, Catherine ;
Barton, Sheila J. ;
Espinosa, Ana ;
Marsh, Julie A. ;
Potter, Catherine ;
Zhang, Ge ;
Ang, Wei ;
Berry, Diane J. ;
Bouchard, Luigi ;
Das, Shikta ;
Hakonarson, Hakon ;
Heikkinen, Jani ;
Helgeland, Oyvind ;
Hocher, Berthold ;
Hofman, Albert ;
Inskip, Hazel M. ;
Jones, Samuel E. ;
Kogevinas, Manolis ;
Lind, Penelope A. ;
Marullo, Letizia ;
Medland, Sarah E. ;
Murray, Anna ;
Murray, Jeffrey C. ;
Njolstad, Pal R. ;
Nohr, Ellen A. ;
Reichetzeder, Christoph ;
Ring, Susan M. ;
Ruth, Katherine S. ;
Santa-Marina, Loreto ;
Scholtens, Denise M. ;
Sebert, Sylvain ;
Sengpiel, Verena ;
Tuke, Marcus A. .
HUMAN MOLECULAR GENETICS, 2018, 27 (04) :742-756
[4]   Predicting disease using genomics [J].
Bell, J .
NATURE, 2004, 429 (6990) :453-456
[5]   Artificial selection and maintenance of genetic variance in the global dairy cow population [J].
Brotherstone, S ;
Goddard, M .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1459) :1479-1488
[6]   LD Score regression distinguishes confounding from polygenicity in genome-wide association studies [J].
Bulik-Sullivan, Brendan K. ;
Loh, Po-Ru ;
Finucane, Hilary K. ;
Ripke, Stephan ;
Yang, Jian ;
Patterson, Nick ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (03) :291-+
[7]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[8]   Animal Models of Alzheimer Disease: Historical Pitfalls and a Path Forward [J].
Cavanaugh, Sarah E. ;
Pippin, John J. ;
Barnard, Neal D. .
ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION, 2014, 31 (03) :279-302
[9]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[10]   Developing and evaluating polygenic risk prediction models for stratified disease prevention [J].
Chatterjee, Nilanjan ;
Shi, Jianxin ;
Garcia-Closas, Montserrat .
NATURE REVIEWS GENETICS, 2016, 17 (07) :392-406