Improved adaptive state-of-charge estimation for batteries using a multi-model approach

被引:54
|
作者
Fang, Huazhen [1 ]
Zhao, Xin [1 ]
Wang, Yebin [2 ]
Sahinoglu, Zafer [2 ]
Wada, Toshihiro [3 ]
Hara, Satoshi [3 ]
de Callafon, Raymond A. [1 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92093 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[3] Mitsubishi Electr Corp, Adv Technol R&D Ctr, Amagasaki, Hyogo 6618661, Japan
关键词
State-of-charge; Adaptive estimation; Multiple models; State and parameter estimation; Nonlinear observability; Iterated extended Kalman filter; MANAGEMENT-SYSTEMS; OBSERVER; FILTER; PACKS;
D O I
10.1016/j.jpowsour.2013.12.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Adaptive estimation of the state-of-charge (SoC) for batteries is increasingly appealing, thanks to its ability to accommodate uncertain or time-varying model parameters. We propose to improve the adaptive SoC estimation using multiple models in this study, developing a unique algorithm called miAdaSoC. Specifically, two submodels in state-space form are generated from a modified Nernst battery model. Both are shown to be locally observable with admissible inputs. The iterated extended Kalman filter (IEKF) is then applied to each submodel in parallel, estimating simultaneously the SoC variable and unknown parameters. The SoC estimates obtained from the two separately implemented IEKEs are fused to yield the final overall SoC estimates, which tend to have higher accuracy than those obtained from a single-model. Its effectiveness is demonstrated using simulation and experiments. The notion of multimodel estimation can be extended promisingly to the development of many other advanced battery management and control strategies. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:258 / 267
页数:10
相关论文
共 50 条
  • [21] A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries
    He, Yao
    Liu, XingTao
    Zhang, ChenBin
    Chen, ZongHai
    APPLIED ENERGY, 2013, 101 : 808 - 814
  • [22] State-of-Charge Estimation Method for Lithium Batteries Based on Adaptive Fusion Factors
    Ling, Liuyi
    Zhang, Hu
    Shi, Yuting
    Zhang, Ting
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (11)
  • [23] Nonlinear adaptive estimation of the state of charge for Lithium-ion batteries
    Wang, Yebin
    Fang, Huazhen
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 4405 - 4410
  • [24] Robust state-of-charge estimation for lithium-ion batteries based on an improved gas-liquid dynamics model
    Chen, Biao
    Jiang, Haobin
    Chen, Xijia
    Li, Huanhuan
    ENERGY, 2022, 238
  • [25] Adaptive Parameter Identification and State-of-Charge Estimation of Lithium-Ion Batteries
    Rahimi-Eichi, Habiballah
    Chow, Mo-Yuen
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 4012 - 4017
  • [26] State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization
    Yu, Zhihao
    Huai, Ruituo
    Xiao, Linjing
    ENERGIES, 2015, 8 (08): : 7854 - 7873
  • [27] State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF
    Charkhgard, Mohammad
    Farrokhi, Mohammad
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) : 4178 - 4187
  • [28] Hierarchical Estimation Model of State-of-Charge and State-of-Health for Power Batteries Considering Current Rate
    Xu, Peihang
    Hu, Xiaoyi
    Liu, Benlong
    Ouyang, Tiancheng
    Chen, Nan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6150 - 6159
  • [29] Error Analysis of Model-based State-of-Charge Estimation for Lithium-Ion Batteries at Different Temperatures
    Ren, Zhong
    Du, Changqing
    Wang, Huawu
    Shao, Jianbo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (10): : 9981 - 10006
  • [30] An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries
    Zhang, Cheng
    Li, Kang
    Pei, Lei
    Zhu, Chunbo
    JOURNAL OF POWER SOURCES, 2015, 283 : 24 - 36