Realizing the New Reality: Machine Learning Curbing Antimicrobial Resistance in Cutibacterium acnes

被引:0
作者
Romasha, Gupta [1 ]
Gagan, Dhawan [3 ]
Bipul, Kumar [1 ,2 ]
Hemant, Gautam K. [1 ,2 ]
机构
[1] CSIR Inst Genom & Integrat Biol, New Delhi 110025, India
[2] Acad Sci & Innovat Res, Human Resource Dev Ctr Campus, Ghaziabad, Uttar Pradesh, India
[3] Acharya Narendra Dev Coll, Dept Biomed Sci, New Delhi 110019, India
来源
RESEARCH JOURNAL OF BIOTECHNOLOGY | 2022年 / 17卷 / 12期
关键词
Antimicrobial resistance; Machine learning; PATRIC database; Whole genome analysis; SURVEILLANCE; SKIN;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Increase in antibiotic resistance is the current cause of global concern facing the human healthcare sector. Dermatologists, particularly face a major challenge, especially when treating acne due to the overprescription of antibiotics. In an era of tremendous technological advancement, the need for the development of bioinformatics tools and the availability of public databases is the new holy grail to combat antibiotic resistance. With the emergence of machine learning approaches, screening of drugresistant microbes and identification of known and novel resistant genes have been facilitated for the rapid development of drugs or techniques to combat the problem of resistance. The whole-genome sequences of Cutibacterium acnes are stored digitally in the PATRIC database for research purposes. With the amalgamation of machine learning algorithms along with the availability of genomic sequences, the prediction of antimicrobial resistance is becoming a reality. The swift and accurate prediction of antibiotic resistance using machine learning tools and algorithms would lower the increasing rate of antibiotic resistance encountered in Cutibacterium acnes and will help dermatologists to combat the problem of Acne vulgaris more efficiently.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 38 条
  • [1] Akinsola J.E.T., 2017, INT J COMPUT TRENDS, V48, P128, DOI 10.14445/22312803/IJCTT-V48P126
  • [2] CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database
    Alcock, Brian P.
    Raphenya, Amogelang R.
    Lau, Tammy T. Y.
    Tsang, Kara K.
    Bouchard, Megane
    Edalatmand, Arman
    Huynh, William
    Nguyen, Anna-Lisa, V
    Cheng, Annie A.
    Liu, Sihan
    Min, Sally Y.
    Miroshnichenko, Anatoly
    Tran, Hiu-Ki
    Werfalli, Rafik E.
    Nasir, Jalees A.
    Oloni, Martins
    Speicher, David J.
    Florescu, Alexandra
    Singh, Bhavya
    Faltyn, Mateusz
    Hernandez-Koutoucheva, Anastasia
    Sharma, Arjun N.
    Bordeleau, Emily
    Pawlowski, Andrew C.
    Zubyk, Haley L.
    Dooley, Damion
    Griffiths, Emma
    Maguire, Finlay
    Winsor, Geoff L.
    Beiko, Robert G.
    Brinkman, Fiona S. L.
    Hsiao, William W. L.
    Domselaar, Gary, V
    McArthur, Andrew G.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D517 - D525
  • [3] Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance
    Aquilina, Gabriele
    Bories, Georges
    Chesson, Andrew
    Cocconcelli, Pier Sandro
    de Knecht, Joop
    Dierick, Noel Albert
    Gralak, Mikolaj Antoni
    Gropp, Jurgen
    Halle, Ingrid
    Hogstrand, Christer
    Leng, Lubomir
    Puente, Secundino Lopez
    Haldorsen, Anne-Katrine Lundebye
    Mantovani, Alberto
    Martelli, Giovanna
    Mezes, Miklos
    Renshaw, Derek
    Saarela, Maria
    Sejrsen, Kristen
    Westendorf, Johannes
    [J]. EFSA JOURNAL, 2012, 10 (06)
  • [4] DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data
    Arango-Argoty, Gustavo
    Garner, Emily
    Prudent, Amy
    Heath, Lenwood S.
    Vikesland, Peter
    Zhang, Liqing
    [J]. MICROBIOME, 2018, 6
  • [5] Bin Zaman S, 2017, CUREUS J MED SCIENCE, V9, DOI 10.7759/cureus.1403
  • [6] Prevalence of antibiotic-resistant propionibacteria on the skin of acne patients: 10-year surveillance data and snapshot distribution study
    Coates, P
    Vyakrnam, S
    Eady, EA
    Jones, CE
    Cove, JH
    Cunliffe, WJ
    [J]. BRITISH JOURNAL OF DERMATOLOGY, 2002, 146 (05) : 840 - 848
  • [7] Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data
    Deelder, Wouter
    Christakoudi, Sofia
    Phelan, Jody
    Benavente, Ernest Diez
    Campino, Susana
    McNerney, Ruth
    Palla, Luigi
    Clark, Taane G.
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [8] Microbial drug discovery: 80 years of progress
    Demain, Arnold L.
    Sanchez, Sergio
    [J]. JOURNAL OF ANTIBIOTICS, 2009, 62 (01) : 5 - 16
  • [9] Ding C, 2004, LECT NOTES ARTIF INT, V3056, P414
  • [10] Genomics and the evolution of antibiotic resistance
    Gillings, Michael R.
    Paulsen, Ian T.
    Tetu, Sasha G.
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2017, 1388 (01) : 92 - 107