Maximal Hypoellipticity for Left-Invariant Differential Operators on Lie Groups

被引:0
作者
Bruno, Tommaso [1 ]
机构
[1] Politecn Torino, Dipartimento Eccellenza 2018 2022, Dipartimento Sci Matemat Giuseppe Luigi Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Maximal hypoellipticity; Lie groups; Laplace operators; FUNDAMENTAL SOLUTION; CONTACT STRUCTURES; COMPLEX; SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a maximal hypoelliptic differential operator of arbitrary order, we prove that its graph norm controls the Sobolev norm of the same order if the operator has left-invariant principal part and lower order terms with bounded coefficients. As an application, we obtain the essential self-adjointness on L-2 of Rumin's Laplacians on the contact complex of the Heisenberg groups.
引用
收藏
页码:801 / 809
页数:9
相关论文
共 16 条
  • [1] A SHORT PROOF OF A CLASSICAL COVERING LEMMA
    ANKER, JP
    [J]. MONATSHEFTE FUR MATHEMATIK, 1989, 107 (01): : 5 - 7
  • [2] [Anonymous], 1985, PROGR MATH
  • [3] Baldi A, 2006, RIC MAT, V55, P119, DOI 10.1007/s11587-006-0009-7
  • [4] Compensated compactness in the contact complex of Heisenberg groups
    Baldi, Annalisa
    Franchi, Bruno
    Tesi, Maria Carla
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) : 133 - 185
  • [5] Baldi A, 2009, J EUR MATH SOC, V11, P777
  • [6] Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries
    Baudoin, Fabrice
    Garofalo, Nicola
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (01) : 151 - 219
  • [7] Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
  • [8] Bramanti M., 2000, Rend. Semin. Mat. Torino, V58, P389
  • [9] Sobolev spaces on Lie groups: Embedding theorems and algebra properties
    Bruno, Tommaso
    Peloso, Marco M.
    Tabacco, Anita
    Vallarino, Maria
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (10) : 3014 - 3050
  • [10] Left invariant contact structures on Lie groups
    Diatta, Andre
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (05) : 544 - 552