Application of the radial basis function neural network to the short term prediction of the Earth's polar motion

被引:13
作者
Wang, Guocheng [1 ]
Liu, Lintao [1 ]
Tu, Yi [2 ]
Xu, Xueqing [3 ]
Yuan, Yunbin [1 ]
Song, Min [1 ]
Li, Wenping [4 ]
机构
[1] Chinese Acad Sci, Inst Geodesy & Geophys, State Key Lab Geodesy & Earths Dynam, Wuhan 430077, Hubei, Peoples R China
[2] China Three Gorges Univ, Minist Educ, Three Gorges Reservoir Area, Key Lab Geol Hazards, Yichang 443002, Peoples R China
[3] Chinese Acad Sci, Shanghai Astron Observ, Shanghai 200030, Peoples R China
[4] Hunan Inst Technol, Hengyang 421002, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
RBFNN model; short-term forecast; ultra-short-term prediction; polar motion; ORIENTATION PARAMETERS; AUTOCOVARIANCE PREDICTION; LEAST-SQUARES; APPROXIMATION; COMBINATION;
D O I
10.1007/s11200-017-0805-4
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
By a number of test cases using different sample numbers and sample lengths, we obtain a Radial Basis Function Neural Network (RBFNN) model that is suitable for the short-term forecast of polar motion, especially for the ultra-short-term forecast. By using the same data sample of Earth's polar motion, this RBFNN model can achieve better short-term prediction accuracy than the least-squares+autoregressive (LS+AR) method, and better ultra-short-term prediction accuracy than the LS+AR+Kalman method. Using this model to forecast the polar motion data from January 1, 2002 to December 30, 2007 and from January 1, 2010 to December 30, 2016, respectively, experimental results show that the ultra-short-term forecast accuracy of this RBFNN model is within a precision of 3.15 and 3.08 milliseconds of arc (mas) in polar motion x direction, 2.02 and 2.04 mas in polar motion y direction; the short-term forecast accuracy of RBFNN model is within a precision of 8.83 and 8.69 mas in polar motion x direction, and 5.59 and 5.85 mas in polar motion y direction. As is stated above, this RBFNN model is well capable of forecasting the short-term of polar motion, especially the ultra-short-term.
引用
收藏
页码:243 / 254
页数:12
相关论文
共 23 条
  • [1] Motion of the Earth's pole
    Akulenko, LD
    Kumakshev, SA
    Markov, YG
    [J]. DOKLADY PHYSICS, 2002, 47 (01) : 78 - 84
  • [2] Prediction of Earth rotation parameters by fuzzy inference systems
    Akyilmaz, O
    Kutterer, H
    [J]. JOURNAL OF GEODESY, 2004, 78 (1-2) : 82 - 93
  • [3] Fuzzy-wavelet based prediction of Earth rotation parameters
    Akyilmaz, O.
    Kutterer, H.
    Shum, C. K.
    Ayan, T.
    [J]. APPLIED SOFT COMPUTING, 2011, 11 (01) : 837 - 841
  • [4] [Anonymous], 1984, PRAEHIST Z, V59, P81
  • [5] [Anonymous], 1996, INTRO RADIAL BASIS F
  • [6] [Anonymous], 2001, Neural Networks: A Comprehensive Foundation
  • [7] Achievements of the Earth orientation parameters prediction comparison campaign
    Kalarus, M.
    Schuh, H.
    Kosek, W.
    Akyilmaz, O.
    Bizouard, Ch.
    Gambis, D.
    Gross, R.
    Jovanovic, B.
    Kumakshev, S.
    Kutterer, H.
    Cerveira, P. J. Mendes
    Pasynok, S.
    Zotov, L.
    [J]. JOURNAL OF GEODESY, 2010, 84 (10) : 587 - 596
  • [8] Kalarus M., 2007, THESIS
  • [9] Autocovariance prediction of complex-valued polar motion time series
    Kosek, W
    [J]. NEW TRENDS IN SPACE GEODESY, 2002, 30 (02): : 375 - 380
  • [10] Possible improvement of Earth orientation forecast using autocovariance prediction procedures
    Kosek, W
    McCarthy, DD
    Luzum, BJ
    [J]. JOURNAL OF GEODESY, 1998, 72 (04) : 189 - 199