Local asymptotic normality for qubit states

被引:59
作者
Guta, Madalin
Kahn, Jonas
机构
[1] Univ Nijmegen, NL-6500 GL Nijmegen, Netherlands
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 05期
关键词
D O I
10.1103/PhysRevA.73.052108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider n identically prepared qubits and study the asymptotic properties of the joint state rho(circle times n). We show that for all individual states, rho situated in a local neighborhood of size 1 root n of a fixed state rho(0), the joint state converges to a displaced thermal equilibrium state of a quantum harmonic oscillator. The precise meaning of the convergence is that there exists physical transformations T-n (trace preserving quantum channels) which map the qubits states asymptotically close to their corresponding oscillator state, uniformly over all states in the local neighborhood. A few consequences of the main result are derived. We show that the optimal joint measurement in the Bayesian setup is also optimal within the point-wise approach. Moreover, this measurement converges to the heterodyne measurement which is the optimal joint measurement of position and momentum for the quantum oscillator. A problem of local state discrimination is solved using local asymptotic normality.
引用
收藏
页数:15
相关论文
共 46 条
[1]   QUANTUM CENTRAL LIMIT-THEOREMS FOR STRONGLY MIXING RANDOM-VARIABLES [J].
ACCARDI, L ;
BACH, A .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 68 (03) :393-402
[2]  
Accardi L., 1987, LECT NOTES MATH, V1396, P7
[3]   An invitation to quantum tomography [J].
Artiles, LM ;
Gill, RD ;
Guta, MI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :109-134
[4]   Collective versus local measurements in a qubit mixed-state estimation -: art. no. 010304 [J].
Bagan, E ;
Baig, M ;
Muñoz-Tapia, R ;
Rodriguez, A .
PHYSICAL REVIEW A, 2004, 69 (01) :4
[5]   Comprehensive analysis of quantum pure-state estimation for two-level systems -: art. no. 062318 [J].
Bagan, E ;
Monras, A ;
Muñoz-Tapia, R .
PHYSICAL REVIEW A, 2005, 71 (06)
[6]  
BAGAN E, QUANTHPH0510158, P20403
[7]   On quantum statistical inference [J].
Barndorff-Nielsen, OE ;
Gill, RD ;
Jupp, PE .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :775-805
[8]  
BARNDORFFNIELSE.OE, 2000, J PHYS A, V33, P1
[9]   Measurement of the quantum states of squeezed light [J].
Breitenbach, G ;
Schiller, S ;
Mlynek, J .
NATURE, 1997, 387 (6632) :471-475
[10]   Quantum state discrimination [J].
Chefles, A .
CONTEMPORARY PHYSICS, 2000, 41 (06) :401-424