A multiparty error-correcting method for quantum secret sharing

被引:37
作者
Chen, Rui-Ke [1 ,2 ]
Zhang, Ying-Ying [1 ,2 ]
Shi, Jian-Hong [1 ,2 ]
Li, Feng-Guang [1 ,2 ]
机构
[1] Zhengzhou Informat Sci & Technol Inst, Zhengzhou 450004, Peoples R China
[2] Sci & Technol Informat Assurance Lab, Beijing 100072, Peoples R China
关键词
Quantum secret sharing; Multiparty error correction; Quantum cryptography; Cascade protocol; RECONCILIATION; ENTANGLEMENT;
D O I
10.1007/s11128-013-0716-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum secret sharing (QSS) refers to the process in which the secret is divided into several sub-secrets and sent to different users utilizing quantum technology. Only the user belonging to a specific subset (authorized set) can reconstruct the initial secret correctly. In principle, the authorized set can regain the initial secret exactly via sub-secrets. However, when realizing QSS in practice, because of the interference of various noises, the secret obtained by the authorized set may not be consistent with the initial one. For a particular kind of QSS protocols, in which the bitwise XOR of sub-secrets is equal to the initial secret theoretically, we propose a feasible multiparty error-correcting method based on binary search technique and two-party Cascade error-correcting method. With this method, we can solve the problem that the authorized set cannot regain the initial secret correctly. Finally, we analyze the optimal block length, the amount of leaked information, and realize tripartite error-correcting method by experimental simulation.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 33 条
[1]   Sagnac secret sharing over telecom fiber networks [J].
Bogdanski, Jan ;
Ahrens, Johan ;
Bourennane, Mohamed .
OPTICS EXPRESS, 2009, 17 (02) :1055-1063
[2]  
Brassard G., 1994, LECT NOTES COMPUTER, V765, P410, DOI [10.1007/3-540-48285-7_35, DOI 10.1007/3-540-48285-7_35]
[3]   Fast, efficient error reconciliation for quantum cryptography [J].
Buttler, WT ;
Lamoreaux, SK ;
Torgerson, JR ;
Nickel, GH ;
Donahue, CH ;
Peterson, CG .
PHYSICAL REVIEW A, 2003, 67 (05) :8
[4]   Multi-party quantum secret sharing with the single-particle quantum state to encode the information [J].
Chen, Xiu-Bo ;
Niu, Xin-Xin ;
Zhou, Xin-Jie ;
Yang, Yi-Xian .
QUANTUM INFORMATION PROCESSING, 2013, 12 (01) :365-380
[5]   Experimental quantum secret sharing and third-man quantum cryptography [J].
Chen, Y ;
Zhang, AN ;
Zhao, Z ;
Zhou, XQ ;
Lu, CY ;
Peng, CZ ;
Yang, T ;
Pan, JW .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[6]   How to share a quantum secret [J].
Cleve, R ;
Gottesman, D ;
Lo, HK .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :648-651
[7]   Threshold quantum secret sharing between multiparty and multiparty using Greenberger-Horne-Zeilinger state [J].
Dehkordi, Massoud Hadian ;
Fattahi, Elham .
QUANTUM INFORMATION PROCESSING, 2013, 12 (02) :1299-1306
[8]   Multiparty quantum secret splitting and quantum state sharing [J].
Deng, Fu-Guo ;
Li, Xi-Han ;
Li, Chun-Yan ;
Zhou, Ping ;
Zhou, Hong-Yu .
PHYSICS LETTERS A, 2006, 354 (03) :190-195
[9]  
Elkouss D, 2011, QUANTUM INF COMPUT, V11, P226
[10]   Theory of quantum secret sharing [J].
Gottesman, D .
PHYSICAL REVIEW A, 2000, 61 (04) :8