Thermoelectric performance in pseudo-ternary (PbTe)0.95-x(Sb2Se3)x(PbS)0.05 system with ultra-low thermal conductivity via multi-scale phonon scattering

被引:4
作者
Zhang, C. C. [1 ]
Zhao, Y. [1 ]
Gu, P. [1 ]
Peng, L. M. [1 ]
机构
[1] Univ Sci & Technol China, Sch Engn Sci, Dept Modern Mech, CAS Key Lab Mech Behav & Design Mat, Hefei 230027, Anhui, Peoples R China
关键词
Thermoelectric materials; PbTe; Sb2Se3; doping; Thermal conductivity; Multi-scale hierarchical architectures; N-TYPE PBTE; CONVERGENCE;
D O I
10.1016/j.cap.2020.06.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among the intermediate temperature (500-900 K) thermoelectric materials, both the pand n-type lead telluride (PbTe) compounds have attracted extensive interests. Till date various approaches were adopted to enhance the thermoelectric performance of n-type PbTe-based materials as they show greater potential space for further improvement compared to p-type ones. Herein, a pseudo-ternary n-type (PbTe)(0.95-x)(Sb2Se3)(x)(PbS)(0.05) system was designed and a large value of ZT = 1.61 at 850 K in case of x = 0.01 was achieved. Two factors are responsible for the improved thermoelectric performance. The incorporation of lead sulfide is the key factor to maintain a high level of power factor above 700 K and the multi-scale hierarchical architectures yield ultra-low thermal conductivity.
引用
收藏
页码:1008 / 1012
页数:5
相关论文
共 35 条
[1]  
[Anonymous], 2019, MATER RES EXPRESS, DOI DOI 10.1088/2053-1591/AB24E7
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   High thermoelectric properties of n-type Cd-doped PbTe prepared by melt spinning [J].
Ding, Guangchao ;
Si, Jianxiao ;
Yang, Shidan ;
Wang, GuWei ;
Wu, Haifei .
SCRIPTA MATERIALIA, 2016, 122 :1-4
[4]   Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects [J].
Fu, Liangwei ;
Yin, Meijie ;
Wu, Di ;
Li, Wei ;
Feng, Dan ;
Huang, Li ;
He, Jiaqing .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (09) :2030-2040
[5]   High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95-x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation [J].
Ginting, Dianta ;
Lin, Chan-Chieh ;
Lydia, R. ;
So, Hyeon Seob ;
Lee, Hosun ;
Hwang, Junpil ;
Kim, Woochul ;
Al Orabi, Rabih Al Rahal ;
Rhyee, Jong-Soo .
ACTA MATERIALIA, 2017, 131 :98-109
[6]   Analysis of Phase Separation in High Performance PbTePbS Thermoelectric Materials [J].
Girard, Steven N. ;
Schmidt-Rohr, Klaus ;
Chasapis, Thomas C. ;
Hatzikraniotis, Euripides ;
Njegic, B. ;
Levin, E. M. ;
Rawal, A. ;
Paraskevopoulos, Konstantinos M. ;
Kanatzidis, Mercouri G. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (06) :747-757
[7]   High Performance Na-doped PbTe-PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures [J].
Girard, Steven N. ;
He, Jiaqing ;
Zhou, Xiaoyuan ;
Shoemaker, Daniel ;
Jaworski, Christopher M. ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Heremans, Joseph P. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (41) :16588-16597
[8]   In Situ Nanostructure Generation and Evolution within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity [J].
Girard, Steven N. ;
He, Jiaqing ;
Li, Changpeng ;
Moses, Steven ;
Wang, Guoyu ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NANO LETTERS, 2010, 10 (08) :2825-2831
[9]   Nano-scale dislocations induced by self-vacancy engineering yielding extraordinary n-type thermoelectric Pb0.96-yInySe [J].
Hong, Min ;
Chen, Zhi-Gang ;
Matsumura, Syo ;
Zou, Jin .
NANO ENERGY, 2018, 50 :785-793
[10]   Achieving a High Thermoelectric Performance of Tetrahedrites by Adjusting the Electronic Density of States and Enhancing Phonon Scattering [J].
Huang, Lulu ;
Kong, Yuan ;
Zhang, Jian ;
Xu, Rui ;
Zhu, Chen ;
Wu, Jie ;
Jabbar, Bushra ;
Li, Di ;
Wang, Zhaoming ;
Qin, Xiaoying .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (26) :23361-23371