Semi-Lagrangian Runge-Kutta Exponential Integrators for Convection Dominated Problems

被引:19
作者
Celledoni, Elena [1 ]
Kometa, Bawfeh Kingsley [1 ]
机构
[1] NTNU, Inst Matemat Fag, N-7049 Trondheim, Norway
关键词
Additive Runge-Kutta methods; Commutator-free methods; Convection-diffusion equations; Semi-Lagrangian methods; PARTIAL-DIFFERENTIAL-EQUATIONS; LIE GROUP-METHODS; PROJECTION METHOD;
D O I
10.1007/s10915-009-9291-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the case of nonlinear convection-diffusion problems with a dominating convection term and we propose exponential integrators based on the composition of exact pure convection flows. These methods can be applied to the numerical integration of the considered PDEs in a semi-Lagrangian fashion. Semi-Lagrangian methods perform well on convection dominated problems (Pironneau in Numer. Math. 38:309-332, 1982; Hockney and Eastwood in Computer simulations using particles. McGraw-Hill, New York, 1981; Rees and Morton in SIAM J. Sci. Stat. Comput. 12(3):547-572, 1991; Baines in Moving finite elements. Monographs on numerical analysis. Clarendon Press, Oxford, 1994). In these methods linear convective terms can be integrated exactly by first computing the characteristics corresponding to the gridpoints of the adopted discretization, and then producing the numerical approximation via an interpolation procedure.
引用
收藏
页码:139 / 164
页数:26
相关论文
共 23 条
  • [1] IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS
    ASCHER, UM
    RUUTH, SJ
    WETTON, BTR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) : 797 - 823
  • [2] Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    Ascher, UM
    Ruuth, SJ
    Spiteri, RJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 151 - 167
  • [3] Baines M. J., 1994, Moving Finite Elements
  • [4] Canuto C., 1998, Spectral Methods in Fluid Dynamics
  • [5] Commutator-free Lie group methods
    Celledoni, E
    Marthinsen, A
    Owren, B
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2003, 19 (03): : 341 - 352
  • [6] A Krylov projection method for systems of ODEs
    Celledoni, E
    Moret, I
    [J]. APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) : 365 - 378
  • [7] CELLEDONI E, 2004, CRM P, V39, P19
  • [8] CELLEDONI E, 2009, 4 NTNU DEP MATH SCI
  • [9] Symmetric exponential integrators with an application to the cubic Schrodinger equation
    Celledoni, Elena
    Cohen, David
    Owren, Brynjulf
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (03) : 303 - 317
  • [10] NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL-EQUATIONS ON MANIFOLDS
    CROUCH, PE
    GROSSMAN, R
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (01) : 1 - 33